login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of 10 positive cubes.
42

%I #24 Oct 21 2023 18:23:31

%S 10,17,24,31,36,38,43,45,50,52,57,59,62,64,66,69,71,73,76,78,80,83,85,

%T 87,88,90,92,94,95,97,99,101,102,104,106,108,109,111,113,114,115,116,

%U 118,120,121,122,123,125,127,128,129,130,132,134,135,136,137,139,140,141,142

%N Numbers that are the sum of 10 positive cubes.

%C 374 is the largest of only 99 positive integers not in this sequence. - _M. F. Hasler_, Aug 13 2020

%H David A. Corneth, <a href="/A003333/b003333.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)

%H OEIS Wiki, <a href="/wiki/Index_to_Sums_of_like_powers">Index to sequences related to sums of like powers</a>.

%F a(n) = n + 99 for all n > 275. - _M. F. Hasler_, Aug 13 2020

%e From _David A. Corneth_, Aug 01 2020: (Start)

%e 1646 is in the sequence as 1646 = 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3 + 8^3.

%e 2790 is in the sequence as 2790 = 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 + 6^3 + 7^3 + 8^3 + 10^3.

%e 3450 is in the sequence as 3450 = 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 8^3 + 8^3 + 9^3 + 9^3. (End)

%o (PARI) (A003333_upto(N)=select( {is_A003333(n,k=10,m=3,L=sqrtnint(abs(n-k+1),m))=if( n>k*L^m || n<k, 0, n<k*L^m, forstep(r=min(k-1,n\L^m),0,-1, self()(n-r*L^m,k-r,m,L-1) && return(1)), 1)}, [1..N]))(200) \\ _M. F. Hasler_, Aug 02 2020

%o A3333=A003333_upto(320); A003333(n)=if(n>275, n+99, n>222, n+98, A3333[n]) \\ _M. F. Hasler_, Aug 13 2020

%Y Other sequences of numbers that are the sum of x nonzero y-th powers:

%Y A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),

%Y A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),

%Y A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),

%Y A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),

%Y A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),

%Y A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_