Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Dec 26 2021 20:43:59
%S 8,15,22,29,34,36,41,43,48,50,55,57,60,62,64,67,69,71,74,76,78,81,83,
%T 85,86,88,92,93,95,97,99,100,102,104,106,107,111,112,113,114,118,119,
%U 120,121,123,125,126,130,132,133,134,137,138,139,140,141,144,145,146,148,149
%N Numbers that are the sum of 8 positive cubes.
%C 620 is the largest among only 142 positive integers not in this sequence. This can be proved by induction. - _M. F. Hasler_, Aug 13 2020
%H David A. Corneth, <a href="/A003331/b003331.txt">Table of n, a(n) for n = 1..10000</a>
%H OEIS Wiki, <a href="/wiki/Index_to_Sums_of_like_powers">Index to sequences related to sums of like powers</a>.
%F a(n) = 142 + n for all n > 478. - _M. F. Hasler_, Aug 13 2020
%e From _David A. Corneth_, Aug 01 2020: (Start)
%e 1796 is in the sequence as 1796 = 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 7^3 + 7^3 + 9^3.
%e 2246 is in the sequence as 2246 = 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 11^3.
%e 3164 is in the sequence as 3164 = 5^3 + 5^3 + 6^3 + 6^3 + 8^3 + 8^3 + 9^3 + 9^3.(End)
%t Module[{upto=200,c},c=Floor[Surd[upto,3]];Select[Union[Total/@ Tuples[ Range[ c]^3,8]],#<=upto&]] (* _Harvey P. Dale_, Jan 11 2016 *)
%o (PARI) (A003331_upto(N, k=8, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(150) \\ _M. F. Hasler_, Aug 02 2020
%o A003331(n)=if(n>478, n+142, n>329, n+141, A003331_upto(470)[n]) \\ _M. F. Hasler_, Aug 13 2020
%o (Python)
%o from itertools import combinations_with_replacement as mc
%o def aupto(lim):
%o cbs = (i**3 for i in range(1, int((lim-7)**(1/3))+2))
%o return sorted(set(k for k in (sum(c) for c in mc(cbs, 8)) if k <= lim))
%o print(aupto(150)) # _Michael S. Branicky_, Aug 15 2021
%Y Other sequences of numbers that are the sum of x nonzero y-th powers:
%Y A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
%Y A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
%Y A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
%Y A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
%Y A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
%Y A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_