login
Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,1).
(Formerly M1613)
7

%I M1613 #27 Dec 26 2021 20:42:19

%S 2,6,16,46,140,464,1580,5538,19804,71884,264204,980778,3671652,

%T 13843808,52519836,200320878,767688176,2954410484,11412815256,

%U 44237340702,171997272012,670612394118,2621415708492,10271274034254

%N Number of n-step self-avoiding walks on hexagonal lattice from (0,0) to (1,1).

%C The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>

%Y Cf. A001335, A003289, A003290, A005549, A005550, A005551, A005552, A005553.

%K nonn,walk,more

%O 2,1

%A _N. J. A. Sloane_

%E More terms and title improved by _Sean A. Irvine_, Feb 14 2016

%E a(23)-a(25) from _Bert Dobbelaere_, Jan 15 2019