Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2116 #23 Oct 22 2023 02:25:45
%S 1,2,20,70,112,352,1232,22880,183040,1244672,30098432,72352,
%T 2472371200,115763200,441223168,6838959104,61568122880,745298329600,
%U 28321336524800,1103041527808,573581594460160,4275790067793920,49961677422592
%N Denominators of coefficients of Green function for cubic lattice.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. S. Joyce, <a href="http://www.jstor.org/stable/74037">The simple cubic lattice Green function</a>, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
%F Let {C(n)} be the sequence of rational numbers defined by the recurrence: 8*(n+1)*(2n+1)*(2n+3)*C(n+1) - 6*(2n+1)*(5n^2+5n+2)*C(n) + 24*n^3*C(n-1) + 2*n*(n-1)*(2n-1)*C(n-2) = 0 for n >= 0 with C(0) = 1 and C(n) = 0 if n < 0. Then a(n) is the denominator of C(n). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%o (PARI) C=vector(100);C[3]=1;print1(C[3]",");for(n=1,30,C[n+3]=(6*(2*n-1)*(5*n^2-5*n+2)*C[n+2]-24*(n-1)^3*C[n+1]-2*(n-1)*(n-2)*(2*n-3)*C[n])/(8*n*(2*n-1)*(2*n+1));print1(denominator(C[n+3])",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%Y Cf. A003282.
%K nonn,easy,frac
%O 0,2
%A _N. J. A. Sloane_
%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008