login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Values of phi(k) when phi(k) = phi(k+1).
(Formerly M1874)
5

%I M1874 #64 Nov 27 2024 07:27:38

%S 1,2,8,48,80,96,128,240,288,480,1008,1200,1296,1440,1728,2592,2592,

%T 4800,5600,6480,8640,11040,12480,14976,19008,19200,22464,24320,24576,

%U 21120,28416,27840,25920,32000,32768,36000,47520,52992,60480,59904,79200,89280,96768

%N Values of phi(k) when phi(k) = phi(k+1).

%C In other words, consider k = 1,2,3,4,..., and if phi(k) = phi(k+1), add phi(k) to the sequence.

%D Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B36, pp. 138-142.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Amiram Eldar, <a href="/A003275/b003275.txt">Table of n, a(n) for n = 1..10755</a> (calculated from the b-file at A001274; terms 1..2567 from T. D. Noe)

%H Kathryn Miller, <a href="/A003275/a003275.pdf">The equation phi(n) = phi(n+1)</a>, Unpublished M.S., ND..

%H Kathryn Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [ See <a href="http://dx.doi.org/10.1090/S0025-5718-73-99703-2">Review</a>, Math. Comp., Vol. 27, p. 447-448, 1973 ].

%H Kathryn Miller, <a href="/A003275/a003275_1.pdf">Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000</a>, Mathematics of Computation 27 (1973), 47-48. (Annotated scanned copy)

%H Leo Moser, <a href="http://www.jstor.org/stable/2305815">Some equations involving Euler's totient function</a>, Amer. Math. Monthly, 56 (1949), 22-23.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.

%F a(n) = A000010(A001274(n)). - _Reinhard Zumkeller_, May 20 2014

%t Cases[Split[Table[EulerPhi[k],{k,1,50000}]],{_,_}][[1;;27,1]] (* _Jean-François Alcover_, Mar 20 2011 *)

%t #[[1]]&/@Select[Partition[EulerPhi[Range[80000]],2,1],#[[1]]==#[[2]]&] (* _Harvey P. Dale_, Oct 03 2012 *)

%t SequenceCases[EulerPhi[Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Mar 05 2019 *)

%o (Haskell)

%o a003275 = a000010 . fromIntegral . a001274

%o -- _Reinhard Zumkeller_, May 20 2014

%o (PARI) lista(lim) = my(p1 = 1, p2); for(k = 2, lim, p2 = eulerphi(k); if(p1 == p2, print1(p1, ", ")); p1 = p2); \\ _Amiram Eldar_, Nov 27 2024

%Y Cf. A000010, A001274.

%K nonn,nice

%O 1,2

%A _N. J. A. Sloane_