login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C((k+1)^2, n).
(Formerly M3107)
3

%I M3107 #33 Dec 26 2021 20:41:30

%S 1,3,24,320,6122,153762,4794664,178788528,7762727196,384733667780,

%T 21434922419504,1326212860090560,90227121642144424,

%U 6694736236093168200,538028902298395832832,46558260925421295229568,4316186393637505403773328

%N a(n) = Sum_{k=0..n} (-1)^(n-k) C(n,k)*C((k+1)^2, n).

%D H. W. Gould, personal communication.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A003236/b003236.txt">Table of n, a(n) for n = 0..300</a>

%H Henry W. Gould, <a href="/A003099/a003099.pdf">Letters to N. J. A. Sloane, Oct 1973 and Jan 1974</a>.

%F a(n) ~ c * d^n * (n-1)!, where d = 4 / (w*(2-w)) = 6.17655460948348035823168... and c = exp(1/2 - w^2/8) / (Pi*sqrt(2*w*(1-w))) = 0.740112385268663459927202070799244309431121698475089032623558890186368006364..., where w = -LambertW(-2*exp(-2)) = -A226775. - _Vaclav Kotesovec_, Dec 13 2020, updated Jul 09 2021

%F a(n) / A003235(n) ~ -2 / LambertW(-2*exp(-2)) = 4.92155363456750509... - _Vaclav Kotesovec_, Jul 09 2021

%t Table[Sum[(-1)^(n-k) * Binomial[n,k] * Binomial[(k+1)^2, n], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Dec 13 2020 *)

%Y Cf. A346183.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Mar 19 2015