Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3433 #33 Feb 02 2022 15:59:09
%S 1,4,12,24,52,108,224,412,844,1528,3152,5036,11984,15040,46512,34788,
%T 197612,4036,929368,-702592,4847552,-7033956,27903296,-54403996,
%U 170579740
%N Cluster series for square lattice.
%C The word "cluster" here essentially means polyomino or animal. This sequence can be computed based on a calculation of the perimeter polynomials of polyominoes. In particular, if P_n(x) is the perimeter polynomial for all fixed polyominoes of size n, then this sequence is the coefficients of x in Sum_{k>=1} k^2 * x^k * P_k(1-x). - _Sean A. Irvine_, Aug 15 2020
%D J. W. Essam, Percolation and cluster size, in C. Domb and M. S. Green, Phase Transitions and Critical Phenomena, Ac. Press 1972, Vol. 2; see especially pp. 225-226.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H John Adler, <a href="https://doi.org/10.1063/1.168493">Series Expansions</a>, Computers in Physics, 8 (1994), 287-295.
%H A. R. Conway and A. J. Guttmann, <a href="https://doi.org/10.1088/0305-4470/28/4/015">On two-dimensional percolation</a>, J. Phys. A: Math. Gen., 28 (1995), 891-904. See Table 3.
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a003/A003203.java">Java program</a> (github)
%H M. F. Sykes and J. W. Essam, <a href="https://doi.org/10.1103/PhysRev.133.A310">Critical percolation probabilities by series methods</a>, Phys. Rev., 133 (1964), A310-A315.
%H M. F. Sykes and M. Glen, <a href="https://doi.org/10.1088/0305-4470/9/1/014">Percolation processes in two dimensions. I. Low-density series expansions</a>, J. Phys. A: Math. Gen., 9 (1976), 87-95.
%Y Cf. A001168, A003202 (triangular net), A003204 (honeycomb net), A003198 (bond percolation), A338210 (perimeter polynomials).
%K sign,more
%O 0,2
%A _N. J. A. Sloane_
%E a(11)-a(14) from _Sean A. Irvine_, Aug 15 2020
%E a(15)-a(24) added from Conway & Guttmann by _Andrey Zabolotskiy_, Feb 01 2022