login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p with a Fibonacci primitive root g, i.e., such that g^2 = g + 1 (mod p).
(Formerly M3811)
16

%I M3811 #95 Oct 29 2023 01:43:25

%S 5,11,19,31,41,59,61,71,79,109,131,149,179,191,239,241,251,269,271,

%T 311,359,379,389,409,419,431,439,449,479,491,499,569,571,599,601,631,

%U 641,659,701,719,739,751,821,839,929,971,1019,1039,1051,1091,1129,1171,1181,1201,1259,1301

%N Primes p with a Fibonacci primitive root g, i.e., such that g^2 = g + 1 (mod p).

%C Primes p with a primitive root g such that g^2 = g + 1 (mod p).

%C Not the same as primes with a Fibonacci number as primitive root; cf. A083701. - _Jonathan Sondow_, Feb 17 2013

%C For all except the initial term 5, these are numbers such that the Pisano period equals 1 less than the Pisano number, i.e., where A001175(n) = n-1. - _Matthew Goers_, Sep 20 2013

%C As shown in the paper by Brison, these are also the primes p such that there is a Fibonacci-type sequence (mod p) that begins with (1,b) and encounters all numbers less than p in the first p-1 iterations (for some b). - _T. D. Noe_, Feb 26 2014

%C Shanks (1972) conjectured that the relative asymptotic density of this sequence in the sequence of primes is 27*c/38 = 0.2657054465..., where c is Artin's constant (A005596). The conjecture was proved on the assumption of a generalized Riemann hypothesis by Lenstra (1977) and Sander (1990). - _Amiram Eldar_, Jan 22 2022

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Charles R Greathouse IV, <a href="/A003147/b003147.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Noe)

%H Bob Bastasz, <a href="https://www.fq.math.ca/Papers1/58-5/bastasz.pdf">Lyndon words of a second-order recurrence</a>, Fibonacci Quarterly, Vol. 58, No. 5 (2020), pp. 25-29.

%H Owen J. Brison, <a href="http://www.fq.math.ca/Scanned/30-4/brison.pdf">Complete Fibonacci sequences in finite fields</a>, Fibonacci Quarterly, Vol. 30, No. 4 (1992), pp. 295-304.

%H Alexandru Gica, <a href="http://www.fq.math.ca/Papers1/46_47-1/Gica_11-08.pdf">Quadratic Residues in Fibonacci Sequences</a>, Fibonacci Quart., Vol. 46/47, No. 1 (2008/2009), pp. 68-72. See Theorem 5.1.

%H Liang-Chung Hsia, Hua-Chieh Li, and Wei-Liang Sun, <a href="https://arxiv.org/abs/2302.00920">Certain Diagonal Equations and Conflict-Avoiding Codes of Prime Lengths</a>, arXiv:2302.00920 [math.NT], 2023.

%H H. W. Lenstra, Jr., <a href="https://doi.org/10.1007/BF01389788">On Artin's conjecture and Euclid's algorithm in global fields</a>, Invent. Math., Vol. 42 (1977), pp. 202-224; <a href="https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1977d/art.pdf">alternative link</a>.

%H J. W. Sander, <a href="https://www.fq.math.ca/Scanned/28-1/sander.pdf">On Fibonacci primitive roots</a>, Fibonacci Quarterly, Vol. 28, No. 1 (1990), pp. 79-80.

%H Daniel Shanks, <a href="http://www.fq.math.ca/Scanned/10-2/shanks-a.pdf">Fibonacci primitive roots</a>, <a href="http://www.fq.math.ca/Scanned/10-2/shanks-b.pdf">end of article</a>, Fibonacci Quarterly, Vol. 10, No. 2 (1972), pp. 163-168, 181.

%H Daniel Shanks and Larry Taylor, <a href="https://www.fq.math.ca/Scanned/11-2/shanks.pdf">An Observation of Fibonacci Primitive Roots</a>, Fibonacci Quarterly, Vol. 11, No. 2 (1973), pp. 159-160.

%H <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>.

%e 3 is a primitive root mod 5, and 3^2 = 3 + 1 mod 5, so 5 is a member. - _Jonathan Sondow_, Feb 17 2013

%p filter:=proc(n) local g,r;

%p if not isprime(n) then return false fi;

%p r:= [msolve(g^2 -g - 1, n)][1];

%p numtheory:-order(rhs(op(r)),n) = n-1

%p end proc:

%p select(filter, [5,seq(seq(10*i+j,j=[1,9]),i=1..1000)]); # _Robert Israel_, May 22 2015

%t okQ[p_] := AnyTrue[PrimitiveRootList[p], Mod[#^2, p] == Mod[#+1, p]&]; Select[Prime[Range[300]], okQ] (* _Jean-François Alcover_, Jan 04 2016 *)

%o (PARI) is(n)=if(kronecker(5,n)<1||!isprime(n), return(n==5)); my(s=sqrt(Mod(5,n))); znorder((1+s)/2)==n-1 || znorder((1-s)/2)==n-1 \\ _Charles R Greathouse IV_, May 22 2015

%Y Subsequence of A038872.

%Y Cf. A001175, A005596, A083701.

%Y See also A106535.

%K nonn,easy,nice

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _David W. Wilson_

%E Cross-reference from _Charles R Greathouse IV_, Nov 05 2009

%E Definition clarified by _M. F. Hasler_, Jun 05 2018