login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts 5k+1 or 5k+4.
(Formerly M0266)
182

%I M0266 #145 Aug 03 2020 01:35:44

%S 1,1,1,1,2,2,3,3,4,5,6,7,9,10,12,14,17,19,23,26,31,35,41,46,54,61,70,

%T 79,91,102,117,131,149,167,189,211,239,266,299,333,374,415,465,515,

%U 575,637,709,783,871,961,1065,1174,1299,1429,1579,1735,1913,2100,2311,2533,2785

%N Number of partitions of n into parts 5k+1 or 5k+4.

%C Expansion of Rogers-Ramanujan function G(x) in powers of x.

%C Same as number of partitions into distinct parts where the difference between successive parts is >= 2.

%C As a formal power series, the limit of polynomials S(n,x): S(n,x)=sum(T(i,x),0<=i<=n); T(i,x)=S(i-2,x).x^i; T(0,x)=1,T(1,x)=x; S(n,1)=A000045(n+1), the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001

%C The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n^2)/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-1))*(1-t^(5*n-4))).

%C Coefficients in expansion of permanent of infinite tridiagonal matrix:

%C 1 1 0 0 0 0 0 0 ...

%C x 1 1 0 0 0 0 0 ...

%C 0 x^2 1 1 0 0 0 ...

%C 0 0 x^3 1 1 0 0 ...

%C 0 0 0 x^4 1 1 0 ...

%C ................... - _Vladeta Jovovic_, Jul 17 2004

%C Also number of partitions of n such that the smallest part is greater than or equal to number of parts. - _Vladeta Jovovic_, Jul 17 2004

%C Also number of partitions of n such that if k is the largest part, then each of {1, 2, ..., k-1} occur at least twice. Example: a(9)=5 because we have [3, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - _Emeric Deutsch_, Feb 27 2006

%C Also number of partitions of n such that if k is the largest part, then k occurs at least k times. Example: a(9)=5 because we have [3, 3, 3], [2, 2, 2, 2, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - _Emeric Deutsch_, Apr 16 2006

%C a(n) = number of NW partitions of n, for n >= 1; see A237981.

%C For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[1](x). - _N. J. A. Sloane_, Nov 22 2015

%C Convolution of A109700 and A109697. - _Vaclav Kotesovec_, Jan 21 2017

%D G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.

%D G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.

%D Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.

%D G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.

%D H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vaclav Kotesovec, <a href="/A003114/b003114.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)

%H G. E. Andrews, <a href="http://www.mat.univie.ac.at/~slc/opapers/s25andrews.html">Three aspects of partitions</a>, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.

%H G. E. Andrews, <a href="http://dx.doi.org/10.1090/S0273-0979-07-01180-9">Euler's "De Partitio Numerorum"</a>, Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.

%H George E. Andrews; R. J. Baxter, <a href="https://doi.org/10.1080/00029890.1989.11972207">A motivated proof of the Rogers-Ramanujan identities</a>, Amer. Math. Monthly 96 (1989), no. 5, 401-409.

%H R. K. Guy, <a href="/A005169/a005169_6.pdf">Letter to N. J. A. Sloane</a>, Sep 25 1986.

%H R. K. Guy, <a href="/A005728/a005728.pdf">Letter to N. J. A. Sloane, 1987</a>

%H R. K. Guy, <a href="/A000081/a000081.pdf">Letter to N. J. A. Sloane, 1988-04-12</a> (annotated scanned copy)

%H R. K. Guy, <a href="http://www.jstor.org/stable/2322249">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712.

%H R. K. Guy, <a href="/A005165/a005165.pdf">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]

%H P. Jacob and P. Mathieu, <a href="http://arXiv.org/abs/hep-th/0505097">Parafermionic derivation of Andrews-type multiple-sums</a>, arXiv:hep-th/0505097, 2005.

%H James Lepowsky and Minxian Zhu, <a href="http://arxiv.org/abs/1205.6570">A motivated proof of Gordon's identities</a>, The Ramanujan Journal 29.1-3 (2012): 199-211.

%H I. Martinjak, D. Svrtan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Martinjak/mart3.html">New Identities for the Polarized Partitions and Partitions with d-Distant Parts</a>, J. Int. Seq. 17 (2014) # 14.11.4.

%H Herman P. Robinson, <a href="/A003105/a003105.pdf">Letter to N. J. A. Sloane, Jan 1974</a>.

%H A. V. Sills, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v10i1r13">Finite Rogers-Ramanujan type identities</a>, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanIdentities.html">Rogers-Ramanujan Identities.</a>

%H Mingjia Yang, Doron Zeilberger, <a href="https://arxiv.org/abs/1910.08989">Systematic Counting of Restricted Partitions</a>, arXiv:1910.08989 [math.CO], 2019.

%F G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).

%F The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - _Joerg Arndt_, Mar 31 2014

%F G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - _Jon Perry_, Jul 06 2004

%F G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - _Michael Somos_, Oct 19 2006

%F Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - _Michael Somos_, Oct 15 2008

%F Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - _Michael Somos_, May 17 2015

%F Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - _Michael Somos_, Jun 13 2015

%F a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Aug 23 2015, extended Jan 24 2017

%F a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 21 2017

%e G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...

%e G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...

%e From _Joerg Arndt_, Dec 27 2012: (Start)

%e The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are

%e [ 1] [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

%e [ 2] [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]

%e [ 3] [ 4 4 1 1 1 1 1 1 1 1 ]

%e [ 4] [ 4 4 4 1 1 1 1 ]

%e [ 5] [ 4 4 4 4 ]

%e [ 6] [ 6 1 1 1 1 1 1 1 1 1 1 ]

%e [ 7] [ 6 4 1 1 1 1 1 1 ]

%e [ 8] [ 6 4 4 1 1 ]

%e [ 9] [ 6 6 1 1 1 1 ]

%e [10] [ 6 6 4 ]

%e [11] [ 9 1 1 1 1 1 1 1 ]

%e [12] [ 9 4 1 1 1 ]

%e [13] [ 9 6 1 ]

%e [14] [ 11 1 1 1 1 1 ]

%e [15] [ 11 4 1 ]

%e [16] [ 14 1 1 ]

%e [17] [ 16 ]

%e The a(16)=17 partitions of 16 where successive parts differ by at least 2 are

%e [ 1] [ 7 5 3 1 ]

%e [ 2] [ 8 5 3 ]

%e [ 3] [ 8 6 2 ]

%e [ 4] [ 9 5 2 ]

%e [ 5] [ 9 6 1 ]

%e [ 6] [ 9 7 ]

%e [ 7] [ 10 4 2 ]

%e [ 8] [ 10 5 1 ]

%e [ 9] [ 10 6 ]

%e [10] [ 11 4 1 ]

%e [11] [ 11 5 ]

%e [12] [ 12 3 1 ]

%e [13] [ 12 4 ]

%e [14] [ 13 3 ]

%e [15] [ 14 2 ]

%e [16] [ 15 1 ]

%e [17] [ 16 ]

%e (End)

%p g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # _Emeric Deutsch_, Feb 27 2006

%t CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* _Jean-François Alcover_, Apr 08 2011, after _Emeric Deutsch_ *)

%t Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 24}] (* _Clark Kimberling, Feb 13 2014 *)

%t a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* _Michael Somos_, May 17 2015 *)

%t a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* _Michael Somos_, May 17 2015 *)

%t nmax = 60; kmax = nmax/5;

%t s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];

%t Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* _Robert Price_, Aug 02 2020 *)

%o (PARI) {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* _Michael Somos_, Oct 15 2008 */

%o (Haskell)

%o a003114 = p a047209_list where

%o p _ 0 = 1

%o p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m

%o -- _Reinhard Zumkeller_, Jan 05 2011

%o (Haskell)

%o a003114 = p 1 where

%o p _ 0 = 1

%o p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m

%o -- _Reinhard Zumkeller_, Feb 19 2013

%Y Cf. A003106, A003116, A127836, A003113, A006141, A039899, A039900.

%Y Cf. A188216 (least part k occurs at least k times).

%Y Cf. A047209, A203776, A237981.

%Y For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.

%Y Row sums of A268187.

%K easy,nonn,nice

%O 0,5

%A _N. J. A. Sloane_, _Herman P. Robinson_