Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2745 #92 Feb 09 2024 10:07:24
%S 0,1,3,8,22,65,209,732,2780,11377,49863,232768,1151914,6018785,
%T 33087205,190780212,1150653920,7241710929,47454745803,323154696184,
%U 2282779990494,16700904488705,126356632390297,987303454928972,7957133905608836,66071772829247409
%N a(n) = Sum_{k = 1..n} (n - k + 1)^k.
%C For n > 0: a(n) = sum of row n of triangles A051129 and A247358. - _Reinhard Zumkeller_, Sep 14 2014
%C a(n-1) is the number of set partitions of [n] into two or more blocks such that all absolute differences between least elements of consecutive blocks are 1. a(3) = 8: 134|2, 13|24, 14|23, 1|234, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - _Alois P. Heinz_, May 22 2017
%C Min_{n >= 1} a(n+1)/a(n) = 8/3. This is the answer to the 4th problem proposed during the first day of the final round of the 16th Austrian Mathematical Olympiad in 1985 (see link IMO Compendium). - _Bernard Schott_, Jan 07 2019
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Charles R Greathouse IV, <a href="/A003101/b003101.txt">Table of n, a(n) for n = 0..598</a>
%H Henry W. Gould, <a href="/A003099/a003099.pdf">Letters to N. J. A. Sloane, Oct 1973 and Jan 1974</a>.
%H Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/77790/asymptotics-of-1n-2n-1-3n-2-cdots-n-12-n1/78167#78167">Asymptotics of ...</a>, 2011.
%H Daniel Ropp, <a href="https://cms.math.ca/wp-content/uploads/crux-pdfs/Crux_v14n01_Jan.pdf">Problem 2 - 16th Austrian Mathematical Olympiad (Final round)</a>, Crux Mathematicorum, page 7, Vol. 14, Jun. 88.
%H The IMO compendium, <a href="https://imomath.com/othercomp/Aut/AutMO85.pdf">Problem 2</a>, 16th Austrian Mathematical Olympiad, 1985.
%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.
%F a(n) = A026898(n) - 1.
%F G.f.: G(0)/x-1/(1-x)/x where G(k) = 1 + x*(2*k*x-1)/((2*k*x+x-1) - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 26 2013
%F G.f.: Sum_{k>=1} x^k/(1 - (k + 1)*x). - _Ilya Gutkovskiy_, Oct 09 2018
%F a(n) = n^1 + (n-1)^2 + (n-2)^3 + ... + 3^(n-2) + 2^(n-1) + 1^n. - _Bernard Schott_, Jan 07 2019
%F log(a(n)) ~ (1 - 1/LambertW(exp(1)*n)) * n * log(1 + n/LambertW(exp(1)*n)). - _Vaclav Kotesovec_, Jun 15 2021
%F a(n) ~ sqrt(2*Pi/(n+1 + w(n))) * w(n)^(n+2 - w(n)), where w(n) = (n+1)/LambertW(exp(1)*(n+1)). - _Vaclav Kotesovec_, Jun 25 2021, after user "leonbloy", see Mathematics Stack Exchange link.
%e For n = 3 we get a(3) = 3^1 + 2^2 + 1^3 = 8. For n = 4 we get a(4) = 4^1 + 3^2 + 2^3 + 1^4 = 22.
%p A003101 := n->add((n-k+1)^k, k=1..n);
%p a:= n-> add((n-j+1)^j, j=1..n): seq(a(n), n=0..30); # _Zerinvary Lajos_, Jun 07 2008
%t Table[Sum[(n-k+1)^k,{k,n}],{n,0,25}] (* _Harvey P. Dale_, Aug 14 2011 *)
%o (PARI) a(n)=sum(k=1,n,(n-k+1)^k) \\ _Charles R Greathouse IV_, Oct 31 2011
%o (Haskell)
%o a003101 n = sum $ zipWith (^) [0 ..] [n + 1, n .. 1]
%o -- _Reinhard Zumkeller_, Sep 14 2014
%o (Magma) [n eq 0 select 0 else (&+[(n-j+1)^j: j in [1..n]]): n in [0..50]]; // _G. C. Greubel_, Oct 26 2022
%o (SageMath)
%o def A003101(n): return sum( (n-k+1)^k for k in range(1,n+1))
%o [A003101(n) for n in range(50)] # _G. C. Greubel_, Oct 26 2022
%Y Cf. A026898, A051129, A062810, A247358, A287215.
%Y First differences are in A047970.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, _Henry W. Gould_