login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Length of shortest (or optimal) Golomb ruler with n marks.
(Formerly M2540)
49

%I M2540 #102 Jan 19 2023 08:52:14

%S 1,3,6,11,17,25,34,44,55,72,85,106,127,151,177,199,216,246,283,333,

%T 356,372,425,480,492,553,585

%N Length of shortest (or optimal) Golomb ruler with n marks.

%C a(n) is the least integer such that there is an n-element set of integers between 0 and a(n), the sums of pairs (of not necessarily distinct elements) of which are distinct.

%C From _David W. Wilson_, Aug 17 2007: (Start)

%C An n-mark Golomb ruler has a unique integer distance between any pair of marks and thus measures n(n-1)/2 distinct integer distances.

%C An optimal n-mark Golomb ruler has the smallest possible length (distance between the two end marks) for an n-mark ruler.

%C A perfect n-mark Golomb ruler has length exactly n(n-1)/2 and measures each distance from 1 to n(n-1)/2. (End)

%C Positions where A143824 increases (see also A227590). - _N. J. A. Sloane_, Apr 08 2016

%C From _Gus Wiseman_, May 17 2019: (Start)

%C Also the smallest m such that there exists a length-n composition of m for which every restriction to a subinterval has a different sum. Representatives of compositions for the first few terms are:

%C 0: ()

%C 1: (1)

%C 3: (2,1)

%C 6: (2,3,1)

%C 11: (3,1,5,2)

%C 17: (4,2,3,7,1)

%C Representatives of corresponding Golomb rulers are:

%C {0}

%C {0,1}

%C {0,2,3}

%C {0,2,5,6}

%C {0,3,4,9,11}

%C {0,4,6,9,16,17}

%C (End)

%D CRC Handbook of Combinatorial Designs, 1996, p. 315.

%D A. K. Dewdney, Computer Recreations, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff.

%D S. W. Golomb, How to number a graph, pp. 23-37 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

%D Richard K. Guy, Unsolved Problems in Number Theory (2nd edition), Springer-Verlag (1994), Section C10.

%D A. Kotzig and P. J. Laufer, Sum triangles of natural numbers having minimum top, Ars. Combin. 21 (1986), 5-13.

%D Miller, J. C. P., Difference bases. Three problems in additive number theory. Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pp. 299--322. Academic Press, London,1971. MR0316269 (47 #4817)

%D Rhys Price Jones, Gracelessness, Proc. 10th S.-E. Conf. Combin., Graph Theory and Computing, 1979, pp. 547-552.

%D Ana Salagean, David Gardner and Raphael Phan, Index Tables of Finite Fields and Modular Golomb Rulers, in Sequences and Their Applications - SETA 2012, Lecture Notes in Computer Science. Volume 7280, 2012, pp. 136-147.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Anonymous, <a href="http://members.aol.com/golomb20">In Search Of The Optimal 20, 21 and 22 Mark Golomb Rulers</a>

%H A. K. Dewdney, <a href="/A003022/a003022.pdf">Computer Recreations</a>, Scientific Amer. 253 (No. 6, Jun), 1985, pp. 16ff; 254 (No. 3, March), 1986, pp. 20ff. [Annotated scanned copy]

%H Distributed.Net, <a href="http://www.distributed.net/ogr">Project OGR</a>

%H Kent Freeman, <a href="/A003022/a003022_2.pdf">Unpublished notes.</a> [Scanned copy]

%H Michael Geißer, Theresa Körner, Sascha Kurz, and Anne Zahn, <a href="https://arxiv.org/abs/2112.00444">Squares with three digits</a>, arXiv:2112.00444 [math.NT], 2021.

%H S. W. Golomb, <a href="/A003022/a003022_3.pdf">Letter to N. J. A. Sloane, 1972</a>.

%H A. Kotzig and P. J. Laufer, <a href="/A003022/a003022_1.pdf">Sum triangles of natural numbers having minimum top</a>, Ars. Combin. 21 (1986), 5-13. [Annotated scanned copy]

%H Joseph Malkevitch, <a href="http://www.ams.org/samplings/feature-column/fc-2012-01">Weird Rulers</a>.

%H G. Martin and K. O'Bryant, <a href="https://arxiv.org/abs/math/0408081">Constructions of generalized Sidon sets</a>, arXiv:math/0408081 [math.NT], 2004-2005.

%H L. Miller, <a href="http://www.cuug.ab.ca/~millerl/g3-records.html">Golomb Rulers</a>

%H K. O'Bryant, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/OBryant/obr3.html">Sets of Natural Numbers with Proscribed Subsets</a>, J. Int. Seq. 18 (2015) # 15.7.7

%H Ed Pegg, Jr., <a href="http://www.mathpuzzle.com/MAA/30-Rulers and Arrays/mathgames_11_15_04.html">Math Games: Rulers, Arrays, and Gracefulness</a>

%H B. Rankin, <a href="http://www.ee.duke.edu/~wrankin/golomb/golomb.html">Golomb Ruler Calculations</a>

%H W. Schneider, <a href="http://web.archive.org/web/2004/www.wschnei.de/number-theory/golomb-rulers.html">Golomb Rulers</a>

%H J. B. Shearer, <a href="http://www.research.ibm.com/people/s/shearer/grtab.html">Golomb ruler table</a>

%H J. B. Shearer, <a href="http://www.research.ibm.com/people/s/shearer/gropt.html">Table of Known Optimal Golomb Rulers</a>

%H J. B. Shearer, <a href="http://www.research.ibm.com/people/s/shearer/dtsopt.html">Difference Triangle Sets: Known optimal solutions</a>.

%H J. B. Shearer, <a href="http://www.research.ibm.com/people/s/shearer/dtslb.html">Difference Triangle Sets: Discoverers</a>

%H David Singmaster, David Fielker, N. J. A. Sloane, <a href="/A004116/a004116.pdf">Correspondence, August 1979</a>

%H N. J. A. Sloane, <a href="/A003022/a003022.gif">First few optimal Golomb rulers</a>

%H D. Vanderschel et al., <a href="http://members.aol.com/golomb20/">In Search Of The Optimal 20, 21 and 22 Mark Golomb Rulers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GolombRuler.html">Golomb Ruler.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Golomb_ruler">Golomb ruler</a>

%H <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>

%F a(n) >= n(n-1)/2, with strict inequality for n >= 5 (Golomb). - _David W. Wilson_, Aug 18 2007

%e a(5)=11 because 0-1-4-9-11 (0-2-7-10-11) resp. 0-3-4-9-11 (0-2-7-8-11) are shortest: there is no b0-b1-b2-b3-b4 with different distances |bi-bj| and max. |bi-bj| < 11.

%t Min@@Total/@#&/@GatherBy[Select[Join@@Permutations/@Join@@Table[IntegerPartitions[i],{i,0,15}],UnsameQ@@ReplaceList[#,{___,s__,___}:>Plus[s]]&],Length] (* _Gus Wiseman_, May 17 2019 *)

%Y See A106683 for triangle of marks.

%Y Cf. A008404, A036501, A039953, A078106, A030873.

%Y 0-1-4-9-11 corresponds to 1-3-5-2 in A039953: 0+1+3+5+2=11

%Y A row or column of array in A234943.

%Y Adding 1 to these terms gives A227590. Cf. A143824.

%Y For first differences see A270813.

%Y Cf. A103295, A108917, A143823, A169942.

%Y Cf. A325466, A325545, A325676, A325677, A325678, A325683.

%K nonn,hard,nice,more

%O 2,2

%A _N. J. A. Sloane_

%E 425 sent by _Ed Pegg Jr_, Nov 15 2004

%E a(25), a(26) proved by OGR-25 and OGR-26 projects, added by _Max Alekseyev_, Sep 29 2010

%E a(27) proved by OGR-27, added by _David Consiglio, Jr._, Jun 09 2014

%E a(28) proved by OGR-28, added by _David Consiglio, Jr._, Jan 19 2023