Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0408 #44 Jul 04 2024 19:57:43
%S 1,2,3,1,4,1,5,1,1,6,2,5,8,3,3,4,2,6,4,4,1,3,2,3,4,1,4,9,1,8,4,3,1,3,
%T 2,6,1,6,1,3,1,1,1,1,12,3,1,3,1,1,4,1,6,1,5,1,2,1,3,3,11,8,1,139,8,2,
%U 8,5,1,2,2,2,2,3,1,1,2,1,1,1,52,2,46,2,2,3
%N Continued fraction for cube root of 3.
%D H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Harry J. Smith, <a href="/A002946/b002946.txt">Table of n, a(n) for n = 0..19999</a>
%H S. Lang and H. Trotter, <a href="http://dx.doi.org/10.1515/crll.1972.255.112">Continued fractions for some algebraic numbers</a>, J. Reine Angew. Math. 255 (1972), 112-134.
%H S. Lang and H. Trotter, <a href="/A002945/a002945.pdf">Continued fractions for some algebraic numbers</a>, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
%H Herman P. Robinson, <a href="/A003116/a003116.pdf">Letter to N. J. A. Sloane, Nov 13 1973</a>.
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e 3^(1/3) = 1.44224957030740838... = 1 + 1/(2 + 1/(3 + 1/(1 + 1/(4 + ...)))). - _Harry J. Smith_, May 08 2009
%p with(numtheory): cfrac(3^(1/3),80,'quotients'); # _Muniru A Asiru_, Nov 02 2018
%t ContinuedFraction[Power[3, (3)^-1],120] (* _Harvey P. Dale_, May 11 2011 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(3^(1/3)); for (n=1, 20000, write("b002946.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 08 2009
%o (Magma) SetDefaultRealField(RealField(100)); ContinuedFraction(3^(1/3)); // _G. C. Greubel_, Nov 02 2018
%Y Cf. A002581 (decimal expansion).
%Y Cf. A002353, A002354 (convergents).
%K nonn,cofr
%O 0,2
%A _N. J. A. Sloane_
%E Offset changed by _Andrew Howroyd_, Jul 04 2024