%I M4255 N1777 #30 Feb 15 2022 11:40:34
%S 6,48,390,3216,26844,229584,2006736,17809008,159799812,1446245424,
%T 13181330772,120849559824,1113598633188
%N High temperature series for spin-1/2 Ising specific heat on 3-dimensional f.c.c. lattice.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. A. Baker, <a href="https://doi.org/10.1103/PhysRev.129.99">Further application of the Padé approximant method to the Ising and Heisenberg models</a>, Phys. Rev. 129 (1963) 99-102.
%H A. J. Guttmann and G. S. Joyce, <a href="https://doi.org/10.1088/0022-3719/6/17/011">Critical behaviour of an isotropic spin system</a>, J. Phys. C: Solid State Phys., 6 (1973), 2691-2712. See Table 1.
%H <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>
%H <a href="/index/Sp#specific_heat">Index entries for sequences related to specific heat</a>
%F G.f.: (v^2-1) * (-q/2*f(v)^2 - (v^2-1) * f'(v)^2 + f(v) * (2*v*f'(v) + (v^2-1)*f''(v))) / f(v)^2, where f(v) is the g.f. of A001407 and q = 12 is the number of nearest neighbors. - _Andrey Zabolotskiy_, Feb 15 2022
%Y Cf. A002916 (cubic), A002917 (b.c.c.), A002921 (susceptibility), A001407 (partition function), A002165 (Heisenberg).
%K nonn,more
%O 0,1
%A _N. J. A. Sloane_
%E Better description from _Steven Finch_
%E a(8)-a(10) from Guttmann & Joyce added by _Andrey Zabolotskiy_, Feb 02 2022
%E a(11)-a(12) from _Andrey Zabolotskiy_, Feb 15 2022