login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

High temperature series for spin-1/2 Ising specific heat on 3-dimensional simple cubic lattice.
(Formerly M3133 N1271)
5

%I M3133 N1271 #41 Feb 15 2022 13:58:32

%S 3,33,564,8976,155124,2791308,51382068,962178084,18258531348,

%T 350143322088,6772382631732,131922552534036,2585198190891636,

%U 50919899448451512,1007393565758096820,20007153991627682124,398699967207692643924,7969220499183448073760,159718349893920279061428

%N High temperature series for spin-1/2 Ising specific heat on 3-dimensional simple cubic lattice.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. A. Baker, <a href="https://doi.org/10.1103/PhysRev.129.99">Further application of the Padé approximant method to the Ising and Heisenberg models</a>, Phys. Rev. 129 (1963) 99-102.

%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ising/ising.html">Lenz-Ising Constants</a> [broken link]

%H Steven R. Finch, <a href="http://web.archive.org/web/20010207201511/http://www.mathsoft.com:80/asolve/constant/ising/ising.html">Lenz-Ising Constants</a> [From the Wayback Machine]

%H A. J. Guttmann and I. G. Enting, <a href="https://doi.org/10.1088/0305-4470/27/24/012">The high-temperature specific heat exponent of the 3-dimensional Ising model</a>, J. Phys. A 27 (1994) 8007-8010.

%H <a href="/index/Sp#specific_heat">Index entries for sequences related to specific heat</a>

%F Sum_{n>=0} a(n) * v^(2*n) = (v^2-1) * (-q/2*f(v)^2 - (v^2-1) * f'(v)^2 + f(v) * (2*v*f'(v) + (v^2-1)*f''(v))) / f(v)^2, where f(v) = Sum_{n>=0} A001393(n) * v^(2*n) and q = 6 is the number of nearest neighbors. - _Andrey Zabolotskiy_, Feb 15 2022

%t 3 Cases[Import["https://oeis.org/A001408/b001408.txt", "Table"], {_, _}][[All, 2]] (* _Jean-François Alcover_, Jan 17 2020 *)

%Y Equals 3*A001408.

%Y Cf. A002917 (b.c.c.), A002918 (f.c.c.), A001393 (partition function), A010571 (internal energy), A002913 (susceptibility), A002169 (Heisenberg model), A029872 (square, low-temperature).

%K nonn

%O 0,1

%A _N. J. A. Sloane_

%E Corrections and updates from _Steven Finch_

%E Terms a(13) and beyond from _Andrey Zabolotskiy_, Feb 15 2022