%I M2990 N1210 #24 Jan 31 2022 01:10:02
%S 3,15,75,363,1767,8463,40695,193983,926943,4404939,20967075,99421371,
%T 471987255,2234455839,10587573027,50060937987,236865126051,
%U 1118861842047,5288016609807,24958663919367,117855045251079,555890991721203,2622994107595707
%N Number of n-step self-avoiding walks on a cubic lattice with a first step along the positive x, y, or z axis.
%D B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 462.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H D. S. McKenzie and C. Domb, <a href="https://doi.org/10.1088/0370-1328/92/3/316">The second osmotic virial coefficient of athermal polymer solutions</a>, Proceedings of the Physical Society, 92 (1967) 632-649.
%H A. M. Nemirovsky et al., <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108.
%H M. F. Sykes, <a href="https://doi.org/10.1063/1.1734262">Self-avoiding walks on the simple cubic lattice</a>, J. Chem. Phys., 39 (1963), 410-411.
%H M. F. Sykes et al., <a href="http://dx.doi.org/10.1088/0305-4470/5/5/007">The asymptotic behavior of selfavoiding walks and returns on a lattice</a>, J. Phys. A 5 (1972), 653-660.
%Y Equals (1/2)*A001412. Cf. A078717, A001411, A001413.
%K nonn,walk,nice
%O 1,1
%A _N. J. A. Sloane_
%E Name amended by _Scott R. Shannon_, Sep 17 2020