%I M1615 N0631 #41 Jun 03 2023 12:01:48
%S 1,1,2,6,16,50,165,554,1908,6667,23556,84048,302404,1095536,3993623
%N Number of 3-connected self-dual planar graphs with 2n edges.
%C Also number of self-dual polyhedra with n+1 vertices (and n+1 faces). - _Franklin T. Adams-Watters_, Dec 18 2006
%D M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 92-91, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H C. J. Bouwkamp & N. J. A. Sloane, <a href="/A000162/a000162.pdf">Correspondence, 1971</a>
%H M. B. Dillencourt, <a href="http://dx.doi.org/10.1006/jctb.1996.0008">Polyhedra of small orders and their Hamiltonian properties</a>, Journal of Combinatorial Theory, Series B, Volume 66, Issue 1, January 1996, Pages 87-122. See bottom of Table IV on page 98.
%H P. J. Federico, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80050-5">Enumeration of polyhedra: the number of 9-hedra</a>, J. Combin. Theory, 7 (1969), 155-161.
%H House of Graphs, <a href="https://houseofgraphs.org/meta-directory/planar">Planar graphs</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Self-DualGraph.html">Self-Dual Graph</a>
%Y Cf. A000944.
%K nonn,nice,more
%O 3,3
%A _N. J. A. Sloane_
%E Definition corrected by _Gordon F. Royle_, Dec 15 2005
%E a(14)-a(17) added by _Jan Goedgebeur_, Sep 16 2021