login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X n invertible binary matrices A such that A+I is invertible.
(Formerly M2170 N0866)
11

%I M2170 N0866 #47 Dec 26 2021 20:30:06

%S 0,2,48,5824,2887680,5821595648,47317927329792,1544457148312846336,

%T 202039706313624586813440,105823549214125066767168438272,

%U 221819704567105547916502447159246848

%N Number of n X n invertible binary matrices A such that A+I is invertible.

%C Also number of linear orthomorphisms of GF(2)^n.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A002820/b002820.txt">Table of n, a(n) for n = 1..55</a>

%H Zong Duo Dai, Solomon W. Golomb, and Guang Gong, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00035-7">Generating all linear orthomorphisms without repetition</a>, Discrete Math. 205 (1999), 47-55.

%H P. F. Duvall, Jr. and P. W. Harley, III, <a href="http://www.jstor.org/stable/2099958">A note on counting matrices</a>, SIAM J. Appl. Math., 20 (1971), 374-377.

%H Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, <a href="https://arxiv.org/abs/2012.13570">Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow</a>, arXiv:2012.13570 [math.CO], 2020.

%H Kent Morrison, <a href="http://www.calpoly.edu/~kmorriso/Research/mnev01.pdf">Matrices over F_q with no eigenvalues of 0 or 1</a>

%H Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

%H <a href="/index/Mat#binmat">Index entries for sequences related to binary matrices</a>

%F Reference gives a recurrence.

%F a(n) = 2^(n(n-1)/2) * A005327(n+1).

%p (Maple program based on Dai et al. from _N. J. A. Sloane_, Aug 10 2011)

%p N:=proc(n,i) option remember; if i = 1 then 1 else (2^n-2^(i-1))*N(n,i-1); fi; end;

%p Oh:=proc(n) option remember; local r; global N;

%p if n=0 then RETURN(1) elif n=1 then RETURN(0) else

%p add( 2^(r-2)*N(n,r)*2^(r*(n-r))*Oh(n-r), r=2..n); fi; end;

%p [seq(Oh(n),n=1..15)];

%t ni[n_, i_] := ni[n, i] = If[i == 1, 1, (2^n - 2^(i-1))*ni[n, i-1]]; a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[ 2^(r-2)*ni[n, r]*2^(r*(n-r))*a[n-r], {r, 2, n}]; Table[a[n], {n, 1, 11}] (* _Jean-François Alcover_, Jan 19 2012, after Maple *)

%Y Cf. A002884.

%K nonn,nice,easy

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Mar 17 2000

%E Entry revised by _N. J. A. Sloane_, Aug 10 2011