login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The composite numbers: numbers n of the form x*y for x > 1 and y > 1.
(Formerly M3272 N1322)
1035

%I M3272 N1322 #305 Oct 22 2024 02:51:30

%S 4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,32,33,34,35,36,

%T 38,39,40,42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,

%U 68,69,70,72,74,75,76,77,78,80,81,82,84,85,86,87,88

%N The composite numbers: numbers n of the form x*y for x > 1 and y > 1.

%C The natural numbers 1,2,... are divided into three sets: 1 (the unit), the primes (A000040) and the composite numbers (A002808).

%C The number of composite numbers <= n (A065855) = n - pi(n) (A000720) - 1.

%C n is composite iff sigma(n) + phi(n) > 2n. This is a nice result of the well known theorem: For all positive integers n, n = Sum_{d|n} phi(d). For the proof see my contribution to puzzle 76 of Carlos Rivera's Primepuzzles. - _Farideh Firoozbakht_, Jan 27 2005, Jan 18 2015

%C The composite numbers have the semiprimes A001358 as primitive elements.

%C A211110(a(n)) > 1. - _Reinhard Zumkeller_, Apr 02 2012

%C A060448(a(n)) > 1. - _Reinhard Zumkeller_, Apr 05 2012

%C A086971(a(n)) > 0. - _Reinhard Zumkeller_, Dec 14 2012

%C Composite numbers n which are the product of r=A001222(n) prime numbers are sometimes called r-almost primes. Sequences listing r-almost primes are: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011

%C a(n) = A056608(n) * A160180(n). - _Reinhard Zumkeller_, Mar 29 2014

%C Degrees for which there are irreducible polynomials which are reducible mod p for all primes p, see Brandl. - _Charles R Greathouse IV_, Sep 04 2014

%C An integer is composite if and only if it is the sum of strictly positive integers in arithmetic progression with common difference 2: 4 = 1 + 3, 6 = 2 + 4, 8 = 3 + 5, 9 = 1 + 3 + 5, etc. - _Jean-Christophe Hervé_, Oct 02 2014

%C This statement holds since k+(k+2)+...+k+2(n-1) = n*(n+k-1) = a*b with arbitrary a,b (taking n=a and k=b-a+1 if b>=a). - _M. F. Hasler_, Oct 04 2014

%C For n > 4, these are numbers n such that n!/n^2 = (n-1)!/n is an integer (see A056653). - _Derek Orr_, Apr 16 2015

%C Let f(x) = Sum_{i=1..x} Sum_{j=2..i-1} cos((2*Pi*x*j)/i). It is known that the zeros of f(x) are the prime numbers. So these are the numbers n such that f(n) > 0. - _Michel Lagneau_, Oct 13 2015

%C Numbers n that can be written as solutions of the Diophantine equation n = (x+2)(y+2) where {x,y} in N^2, pairs of natural numbers including zero (cf. Mathematica code and Davis). - _Ron R Spencer_ and _Bradley Klee_, Aug 15 2016

%C Numbers n with a partition (containing at least two summands) so that its summands also multiply to n. If n is prime, there is no way to find those two (or more) summands. If n is composite, simply take a factor or several, write those divisors and fill with enough 1's so that they add up to n. For example: 4 = 2*2 = 2+2, 6 = 1*2*3 = 1+2+3, 8 = 1*1*2*4 = 1+1+2+4, 9 = 1*1*1*3*3 = 1+1+1+3+3. - _Juhani Heino_, Aug 02 2017

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.

%D A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.

%D Martin Davis, "Algorithms, Equations, and Logic", pp. 4-15 of S. Barry Cooper and Andrew Hodges, Eds., "The Once and Future Turing: Computing the World", Cambridge 2016.

%D R. K. Guy, Unsolved Problems Number Theory, Section A.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.

%D D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 66.

%D Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 51.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A002808/b002808.txt">Table of n, a(n) for n = 1..17737</a> [composites up to 20000]

%H Rolf Brandl, <a href="http://www.jstor.org/stable/2323681">Integer polynomials that are reducible modulo all primes</a>, Amer. Math. Monthly 93 (1986), pp. 286-288.

%H C. K. Caldwell, <a href="https://t5k.org/glossary/page.php?sort=Composite">Composite Numbers</a>

%H Felix Huber, <a href="/A002808/a002808_1.pdf">Illustration for a(1)-a(12)</a>

%H Laurentiu Panaitopol, <a href="http://www.emis.de/journals/JIPAM/article153.html?sid=153">Some properties of the series of composed [sic] numbers</a>, Journal of Inequalities in Pure and Applied Mathematics 2:3 (2001).

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_076.htm">Puzzle 76, z(n)=sigma(n) + phi(n) - 2n</a>, The Prime Puzzles and Problems Connection.

%H J. Barkley Rosser and Lowell Schoenfeld, <a href="http://projecteuclid.org/euclid.ijm/1255631807">Approximate formulas for some functions of prime numbers</a>, Illinois J. Math. 6 1962 64-94

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompositeNumber.html">Composite Number</a>

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%H <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>

%F a(n) = pi(a(n)) + 1 + n, where pi is the prime counting function.

%F a(n) = A136527(n, n).

%F A000005(a(n)) > 2. - _Juri-Stepan Gerasimov_, Oct 17 2009

%F A001222(a(n)) > 1. - _Juri-Stepan Gerasimov_, Oct 30 2009

%F A000203(a(n)) < A007955(a(n)). - _Juri-Stepan Gerasimov_, Mar 17 2011

%F A066247(a(n)) = 1. - _Reinhard Zumkeller_, Feb 05 2012

%F Sum_{n>=1} 1/a(n)^s = Zeta(s)-1-P(s), where P is prime zeta. - _Enrique Pérez Herrero_, Aug 08 2012

%F n + n/log n + n/log^2 n < a(n) < n + n/log n + 3n/log^2 n for n >= 4, see Panaitopol. Bojarincev gives an asymptotic version. - _Charles R Greathouse IV_, Oct 23 2012

%p t := []: for n from 2 to 20000 do if isprime(n) then else t := [op(t),n]; fi; od: t; remove(isprime,[$3..89]); # _Zerinvary Lajos_, Mar 19 2007

%p A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do ; end if; end proc; # _R. J. Mathar_, Oct 27 2009

%t Select[Range[2,100], !PrimeQ[#]&] (* _Zak Seidov_, Mar 05 2011 *)

%t With[{nn=100},Complement[Range[nn],Prime[Range[PrimePi[nn]]]]] (* _Harvey P. Dale_, May 01 2012 *)

%t Select[Range[100], CompositeQ] (* _Jean-François Alcover_, Nov 07 2021 *)

%o (PARI) A002808(n)=for(k=0,primepi(n),isprime(n++)&&k--);n \\ _M. F. Hasler_, Oct 31 2008

%o (PARI) A002808(n)= my(k=-1); while( -n + n += -k + k=primepi(n),); n \\ For n=10^4 resp. 3*10^4, this is about 100 resp. 500 times faster than the former; _M. F. Hasler_, Nov 11 2009

%o (PARI) forcomposite(n=1, 1e2, print1(n, ", ")) \\ _Felix Fröhlich_, Aug 03 2014

%o (PARI) for(n=1, 1e3, if(bigomega(n) > 1, print1(n, ", "))) \\ _Altug Alkan_, Oct 14 2015

%o (Haskell)

%o a002808 n = a002808_list !! (n-1)

%o a002808_list = filter ((== 1) . a066247) [2..]

%o -- _Reinhard Zumkeller_, Feb 04 2012

%o (Python)

%o from sympy import primepi

%o def A002808(n):

%o m, k = n, primepi(n) + 1 + n

%o while m != k:

%o m, k = k, primepi(k) + 1 + n

%o return m # _Chai Wah Wu_, Jul 15 2015, updated Apr 14 2016

%o (Python)

%o from sympy import isprime

%o def ok(n): return n > 1 and not isprime(n)

%o print([k for k in range(89) if ok(k)]) # _Michael S. Branicky_, Nov 07 2021

%o (Magma) [n: n in [2..250] | not IsPrime(n)]; // _G. C. Greubel_, Feb 24 2024

%o (SageMath) [n for n in (2..250) if not is_prime(n)] # _G. C. Greubel_, Feb 24 2024

%Y Complement of A008578. - _Omar E. Pol_, Dec 16 2016

%Y Cf. A000040, A018252, A065090, A136527.

%Y Cf. A073783 (first differences), A073445 (second differences).

%Y Boustrophedon transforms: A230954, A230955.

%Y Cf. A163870 (nontrivial divisors).

%Y Related sequences:

%Y Primes (p) and composites (c): A000040, A002808, A000720, A065855.

%Y Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.

%Y Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

%K nonn,nice,easy,core

%O 1,1

%A _N. J. A. Sloane_

%E Deleted an incomplete and broken link. - _N. J. A. Sloane_, Dec 16 2010