login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Restricted permutations.
(Formerly M3526 N1432)
3

%I M3526 N1432 #38 Apr 20 2024 15:18:26

%S 1,0,0,0,4,16,80,672,4896,49920,460032,5598720,62584320,885381120,

%T 11644323840,187811205120,2841958748160,51481298534400,

%U 881192033648640,17714783352913920,338434210452602880,7477275543168614400

%N Restricted permutations.

%D T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 3, p. 468.

%D Todd Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A002777/b002777.txt">Table of n, a(n) for n = 0..200</a>

%H T. Muir, <a href="http://www.hti.umich.edu/cgi/t/text/text-idx?sid=b88432273f115fb346725f1a42422e19;c=umhistmath;idno=ACM9350.0003.001">The Theory of Determinants in the Historical Order of Development</a>, 4 vols., Macmillan, NY, 1906-1923, Vol. 2.

%H T. Muir, <a href="/A003471/a003471.pdf">The Theory of Determinants in the Historical Order of Development</a>, 4 vols., Macmillan, NY, 1906-1923. [Annotated scans of selected pages]. See Vol. 3 page 468. There may have been some confusion here of this sequence with A003471.

%H T. Simpson, <a href="/A002777/a002777.pdf">Letter to N. J. A. Sloane, Mar. 1992</a>.

%H T. Simpson, <a href="/A007016/a007016.pdf">Permutations with unique fixed and reflected points</a>, Preprint. (Annotated scanned copy)

%F a(n) = (n-1)*a(n-1) + 2*(n-d)*a(n-e), where (d, e) = (2, 3) if n even, (1, 2) if n odd.

%F Recurrence (for n>=7): (3*n^2 - 17*n + 23)*a(n) = (3*n^2 - 17*n + 21)*a(n-1) + (3*n^4 - 23*n^3 + 63*n^2 - 74*n + 34)*a(n-2) - 4*(n-3)*(n-2)*a(n-3) + 2*(n-4)*(n-3)*(3*n^2 - 11*n + 9)*a(n-4). - _Vaclav Kotesovec_, Mar 07 2014

%F a(n) ~ c * n!, where c = 5*sinh(sqrt(2))/2^(3/2) - 3*cosh(sqrt(2))/2 = 0.15347184510862040153106983922669125715345689997588202335369... - _Vaclav Kotesovec_, Mar 07 2014, updated Apr 20 2024

%p a:= proc(n) option remember; `if`(n<5, [1, 0$3, 4][n+1],

%p (n-1)*a(n-1)+2*`if`(n::even, (n-2)*a(n-3), (n-1)*a(n-2)))

%p end:

%p seq(a(n), n=0..23); # _Alois P. Heinz_, Jun 27 2020

%t nmax = 20; b = ConstantArray[0, nmax+1]; b[[1]] = 1; b[[2]] = 0; b[[3]] = 0; b[[4]] = 0; b[[5]] = 4; Do[b[[n+1]] = (n-1)*b[[n]] + If[EvenQ[n],2*(n-2)*b[[n-2]],2*(n-1)*b[[n-1]]], {n, 5, nmax}]; b (* _Vaclav Kotesovec_, Mar 07 2014 *)

%Y Cf. A003471.

%K nonn,easy

%O 0,5

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Sep 24 2001