login
Number of unrooted triangulations of the disk with n interior nodes and 3 nodes on the boundary.
(Formerly M3524 N1431)
6

%I M3524 N1431 #25 Feb 25 2021 02:39:21

%S 1,1,1,4,16,78,457,2938,20118,144113,1065328,8068332,62297808,

%T 488755938,3886672165,31269417102,254141551498,2084129777764,

%U 17228043363781,143432427097935,1201853492038096,10129428318995227,85826173629557200

%N Number of unrooted triangulations of the disk with n interior nodes and 3 nodes on the boundary.

%C These are also called [n,0]-triangulations.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Andrew Howroyd, <a href="/A002713/b002713.txt">Table of n, a(n) for n = 0..500</a>

%H W. G. Brown, <a href="http://dx.doi.org/10.1112/plms/s3-14.4.746">Enumeration of triangulations of the disk</a>, Proc. London Math. Soc., 14 (1964), 746-768.

%H W. G. Brown, <a href="/A002709/a002709.pdf">Enumeration of Triangulations of the Disk</a>, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]

%H CombOS - Combinatorial Object Server, <a href="http://combos.org/plantri">generate planar graphs</a>

%H C. F. Earl and L. J. March, <a href="/A005500/a005500_1.pdf">Architectural applications of graph theory</a>, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)

%F a(n) = (A002709(n) + A002712(n)) / 2.

%Y Column k=0 of A169808.

%K nonn

%O 0,4

%A _N. J. A. Sloane_

%E Terms a(9) onward from _Max Alekseyev_, May 11 2010

%E Name clarified by _Andrew Howroyd_, Feb 24 2021