login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (eta(q) * eta(q^7))^3 in powers of q.
4

%I #43 Oct 18 2023 10:04:13

%S 1,-3,0,5,0,0,-7,-3,9,0,-6,0,0,21,0,-11,0,-27,0,0,0,18,18,0,25,0,0,

%T -35,-54,0,0,45,0,0,0,45,-38,0,0,0,0,0,58,-30,0,-54,0,0,49,-75,0,0,-6,

%U 0,0,21,0,162,0,0,0,0,-63,-91,0,0,-118,0,0,0,114,-27

%N Expansion of (eta(q) * eta(q^7))^3 in powers of q.

%C Number 15 of the 74 eta-quotients listed in Table I of Martin (1996).

%C Unique cusp form of weight 3 for congruence group Gamma_1(7). - _Michael Somos_, Aug 11 2011

%D B. Berndt, Commentary on Ramanujan's Papers, pp. 357-426 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 372 (4).

%D N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. MR1722413 (2001a:11103)

%D N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 145, problem 13.

%H Seiichi Manyama, <a href="/A002656/b002656.txt">Table of n, a(n) for n = 1..10000</a>

%H N. Elkies, <a href="http://www.msri.org/publications/books/Book35/files/elkies.pdf">The Klein quartic in number theory</a>.

%H F. Garvan, D. Kim and D. Stanton, <a href="http://dx.doi.org/10.1007/BF01231493">Cranks and t-cores</a>, Invent. Math. 101 (1990), no. 1, 1-17. see pp 9-10.

%H Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>

%F Euler transform of period 7 sequence [ -3, -3, -3, -3, -3, -3, -6, ...]. - _Michael Somos_, Mar 11 2004

%F a(n) is multiplicative with a(7^e) = (-7)^e, a(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7), a(p^e) = a(p) * a(p^(e-1)) - p^2 * a(p^(e-2)) and a(2) = -3, a(p) = 2 * (x^2 - 7*y^2) where p = x^2 + 7*y^2 if p == 1, 2, 4 (mod 7). - _Michael Somos_, Apr 12 2008

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u * w * (u + 6*v + 8*w) - v^3. - _Michael Somos_, May 02 2005

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^(3/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - _Michael Somos_, Apr 12 2008

%F G.f.: x * (Product_{k>0} (1 - x^k) * (1 - x^(7*k)))^3. - _Michael Somos_, Aug 11 2011

%F G.f.: (1/2) * Sum_{u,v in Z} (u*u - 2*v*v) * x^(u*u + u*v + 2*v*v). - _Michael Somos_, Jun 14 2007

%F a(7*n + 3) = a(7*n + 5) = a(7*n + 6) = 0. - _Michael Somos_, Oct 19 2005

%e G.f. = q - 3*q^2 + 5*q^4 - 7*q^7 - 3*q^8 + 9*q^9 - 6*q^11 + 21*q^14 - 11*q^16 + ...

%t a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^7])^3, {q, 0, n}]; (* _Michael Somos_, Aug 11 2011 *)

%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^7 + A))^3, n))}; /* _Michael Somos_, Apr 16 2005 */

%o (PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( kronecker(-7, p)<1, if( p==7, (-1)^e, 1-e%2) * p^e, for(i=1, sqrtint(p\7), if( issquare(p - 7*i^2), y=i; break)); a0 = 1; a1 = y = if( p==2, -3, 2*p - 28*y^2); for(i=2, e, x = y * a1 - p^2 * a0; a0 = a1; a1 = x); a1)))}; /* _Michael Somos_, Oct 19 2005 */

%o (Sage) CuspForms( Gamma1(7), 3, prec = 72).0; # _Michael Somos_, Aug 11 2011

%o (Magma) Basis( CuspForms( Gamma1(7), 3), 72) [1]; /* _Michael Somos_, Dec 09 2013 */

%K sign,mult

%O 1,2

%A _N. J. A. Sloane_