Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3301 N1331 #34 Oct 17 2023 08:19:10
%S 4,7,10,13,19,28,31,34,40,43,52,70,73,76,82,85,91,97,103,112,115,124,
%T 127,136,145,148,157,166,175,187,190,199,202,223,241,244,259,265,271,
%U 274,280,286,316,325,358,370,376,385,388,409,421,427,442,460,469,472
%N Numbers k such that (k^2 + k + 1)/3 is prime.
%D A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A002640/b002640.txt">Table of n, a(n) for n = 1..1000</a>
%H A. J. C. Cunningham, <a href="/A001912/a001912.pdf">Binomial Factorisations</a>, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
%t Select[Range[500], PrimeQ[(#^2 + # + 1)/3] &] (* _Vincenzo Librandi_, Sep 25 2012 *)
%o (Magma) [n: n in [4..500] | IsPrime((n^2+n+1) div 3)]; // _Vincenzo Librandi_, Nov 18 2010
%o (PARI) is(n)=isprime((n^2+n+1)/3) \\ _Charles R Greathouse IV_, Jun 06 2017
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_