Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4106 N1703 #28 Oct 17 2023 07:41:20
%S 1,6,15,19,24,42,73,127,208,337,528,827,1263,1902,2819,4133,5986,8578,
%T 12146,17057,23711,32708,44726,60713,81800,109468,145526,192288,
%U 252521,329792,428316,553478,711596,910563,1159790,1470798,1857286,2335838
%N A generalized partition function.
%D Hansraj Gupta, A generalization of the partition function. Proc. Nat. Inst. Sci. India 17 (1951), 231-238.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A002599/b002599.txt">Table of n, a(n) for n = 1..1000</a>
%H Hansraj Gupta, <a href="/A002597/a002597.pdf">A generalization of the partition function</a>, Proc. Nat. Inst. Sci. India 17 (1951), 231-238. [Annotated scanned copy]
%p J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(5, t)), x, 1+max(5, t)), x, max(5, t)): seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 20 2009
%t J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[5, t]], {x, 0, Max[5, t]}]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Mar 13 2014, after _Alois P. Heinz_ *)
%K nonn
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Alois P. Heinz_, Jul 20 2009