Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0389 N0147 #24 Oct 16 2023 23:53:35
%S 1,1,1,2,2,17,1,91,16,1,1,105,4,55,1314,16,2,28
%N Number of nonisomorphic solutions to minimal independent dominating set on queens' graph Q(n).
%D W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H P. B. Gibbons and J. A. Webb, <a href="https://ajc.maths.uq.edu.au/pdf/15/ocr-ajc-v15-p145.pdf">Some new results for the queens domination problem</a>, Australasian Journal of Combinatorics 15 (1997), pp. 145-160.
%H Matthew D. Kearse and Peter B. Gibbons, <a href="http://ajc.maths.uq.edu.au/pdf/23/ocr-ajc-v23-p253.pdf">Computational Methods and New Results for Chessboard Problems</a>, Australasian Journal of Combinatorics 23 (2001), 253-284.
%H M. A. Sainte-Laguë, <a href="https://eudml.org/doc/192551">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
%H M. A. Sainte-Laguë, <a href="/A002560/a002560.pdf">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
%Y See A002568 for the number of distinct solutions.
%Y A075324 gives number of queens required.
%K nonn,more
%O 1,4
%A _N. J. A. Sloane_
%E a(9) corrected by Peter Gibbons, May 30 2004