Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3256 N1314 #25 Apr 09 2018 11:00:44
%S 1,-1,4,-5,15,-19,45,-52,118,-137,281,-316,625,-695,1331,-1444,2696,
%T -2907,5308,-5640,10122,-10650,18845,-19628,34241,-35378,61036,-62524,
%U 106783,-108593,183799,-185646,311625,-312800,521232,-520044,860728,-854151,1404871,-1386868,2267960,-2228161
%N Expansion of a modular function for Gamma_0(14).
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A002509/b002509.txt">Table of n, a(n) for n = 4..1000</a>
%H Morris Newman, <a href="http://plms.oxfordjournals.org/content/s3-9/3/373.extract">Construction and application of a class of modular functions (II)</a>. Proc. London Math. Soc. (3) 9 1959 373-387.
%H Morris Newman, <a href="/A002507/a002507.pdf">Construction and application of a class of modular functions, II</a>, Proc. London Math. Soc. (3) 9 1959 373-387. [Annotated scanned copy, barely legible]
%F eta(z)*eta(14z)^11/(eta(2z)^5*eta(7z)^7)
%F Euler transform of period 14 sequence [ -1, 4, -1, 4, -1, 4, 6, 4, -1, 4, -1, 4, -1, 0, ...]. - _Michael Somos_, Nov 10 2005
%F a(2*n) - a(2*n-1) ~ exp(4*Pi*sqrt(n/7)) / (sqrt(2) * 7^(9/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 09 2018
%t QP = QPochhammer; A = x*O[x]^50; s = QP[x+A]*(QP[x^14+A]^11/QP[x^2+A]^5/ QP[x^7+A]^7); CoefficientList[s, x] (* _Jean-François Alcover_, Nov 29 2015, adapted from PARI *)
%o (PARI) {a(n)=local(A); if(n<4, 0, n-=4; A=x*O(x^n); polcoeff( eta(x+A)*eta(x^14+A)^11/ eta(x^2+A)^5/eta(x^7+A)^7, n))} /* _Michael Somos_, Nov 10 2005 */
%K sign,easy
%O 4,3
%A _N. J. A. Sloane_
%E More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jan 14 2001