login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of coefficients of expansion of Bessel function J_2(x).
11

%I #17 Oct 17 2023 05:43:35

%S 8,96,3072,184320,17694720,2477260800,475634073600,119859786547200,

%T 38355131695104000,15188632151261184000,7290543432605368320000,

%U 4170190843450270679040000,2802368246798581896314880000

%N Denominators of coefficients of expansion of Bessel function J_2(x).

%D Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.4.7

%H T. D. Noe, <a href="/A002506/b002506.txt">Table of n, a(n) for n = 0..50</a>

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%F a(n) = 2^(2n+k) * n! * (n+k)! here for k=2, i.e., Bessel's J2(x).

%F a(n) - 4*n*(n+2)*a(n-1) = 0. - _R. J. Mathar_, Jun 20 2013

%e a(2) = 3072 = 64*2*24, J2(x) = x^2/8 - x^4/96 + x^6/3072 - x^8/184320 +- ...

%t Denominator[Take[CoefficientList[Series[BesselJ[2,x],{x,0,30}],x],{3,-1,2}]] (* _Harvey P. Dale_, Sep 21 2013 *)

%Y J0: A002454, J1: A002474, J3: A014401.

%K nonn

%O 0,1

%A _N. J. A. Sloane_

%E Previous Mathematica program corrected by _Harvey P. Dale_, Sep 21 2013