Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5030 N2170 #84 Oct 28 2023 11:42:59
%S 1,1,16,19683,4294967296,298023223876953125,
%T 10314424798490535546171949056,
%U 256923577521058878088611477224235621321607,6277101735386680763835789423207666416102355444464034512896,196627050475552913618075908526912116283103450944214766927315415537966391196809
%N a(n) = n^(n^2), or (n^n)^n.
%C The number of closed binary operations on a set of order n. Labeled groupoids.
%C The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - _Robert Munafo_, Jan 25 2010
%C n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - _Daniel Forgues_, May 18 2013
%D John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Michael Lee, <a href="/A002489/b002489.txt">Table of n, a(n) for n = 0..26</a> (first 16 terms from Vincenzo Librandi)
%H Robert Munafo, <a href="http://mrob.com/pub/math/hyper4.html">Hyper4 Iterated Exponential Function</a> [From _Robert Munafo_, Jan 25 2010]
%H Eric Postpischil, <a href="http://groups.google.com/groups?&hl=en&lr=&ie=UTF-8&selm=11802%40shlump.nac.dec.com&rnum=2">Posting to sci.math newsgroup, May 21 1990</a>.
%H P. Rossier, <a href="http://retro.seals.ch/digbib/view?pid=elemat-001:1948:3::26">Grands nombres</a>, Elemente der Mathematik, Vol. 3 (1948), p. 20; <a href="https://www.digizeitschriften.de/dms/img/?PID=PPN378850199_0003%7Clog8">alternative link</a>.
%H <a href="/index/Gre#groupoids">Index entries for sequences related to groupoids</a>
%F a(n) = [x^(n^2)] 1/(1 - n*x). - _Ilya Gutkovskiy_, Oct 10 2017
%F Sum_{n>=1} 1/a(n) = A258102. - _Amiram Eldar_, Nov 11 2020
%e a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.
%t Join[{1},Table[n^n^2,{n,10}]] (* _Harvey P. Dale_, Sep 06 2011 *)
%o (Magma) [n^(n^2): n in [0..10]]; // _Vincenzo Librandi_, May 13 2011
%o (PARI) a(n)=n^(n^2) \\ _Charles R Greathouse IV_, Nov 20 2012
%Y a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);
%Y a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);
%Y a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).
%Y Cf. A002488, A001329, A002488, A023813, A076113, A090588, A000312, A258102.
%K nonn,easy,nice
%O 0,3
%A _N. J. A. Sloane_