OFFSET
3,2
REFERENCES
C. Berge, Principles of Combinatorics, Academic Press, NY, 1971, p. 162.
E. N. Gilbert, Knots and classes of menage permutations, Scripta Math., 22 (1956), 228-233 (1957).
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 195.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 3..200
E. N. Gilbert, Knots and classes of menage permutations [Annotated scanned copy of preprint]
FORMULA
Gilbert gives a formula (see Maple code).
a(n) ~ (n-1)! * exp(-2). - Vaclav Kotesovec, May 23 2014
MAPLE
with(numtheory): d := n->divisors(n): U := (m, t)->sum(2*m*binomial(2*m-k, k)*(m-k)!*(t-1)^k/(2*m-k), k=0..m): A := (n, i)->phi(n/dd[i])*(n/dd[i])^dd[i]*U(dd[i], 1-dd[i]/n)/n: for n from 3 to 28 do dd := d(n): B := [seq(A(n, j), j=1..nops(dd))]: a[n] := sum(B[i], i=1..nops(B)) od: seq(a[n], n=3..28); # Emeric Deutsch, Mar 08 2004
MATHEMATICA
u[m_, t_] := Sum[ 2m*Binomial[ 2m-k, k]*(m-k)!*((t-1)^k / (2m-k)), {k, 0, m}]; a[n_] := Sum[ EulerPhi[n/d] * (n/d)^d * (u[d, 1-d/n]/n), {d, Divisors[n]} ]; Table[ a[n], {n, 3, 22} ] (* Jean-François Alcover, Dec 07 2011, after Maple *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Mar 08 2004
STATUS
approved