login
A002484
Number of ménage permutations.
(Formerly M1524 N0597)
1
1, 2, 5, 20, 87, 616, 4843, 44128, 444621, 4936274, 59661265, 780547332, 10987097799, 165587196328, 2660378564791, 45392026278108, 819716784789209, 15620011000052754, 313219935456572497, 6593238656843759572
OFFSET
3,2
REFERENCES
C. Berge, Principles of Combinatorics, Academic Press, NY, 1971, p. 162.
E. N. Gilbert, Knots and classes of menage permutations, Scripta Math., 22 (1956), 228-233 (1957).
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 195.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. N. Gilbert, Knots and classes of menage permutations [Annotated scanned copy of preprint]
FORMULA
Gilbert gives a formula (see Maple code).
a(n) ~ (n-1)! * exp(-2). - Vaclav Kotesovec, May 23 2014
MAPLE
with(numtheory): d := n->divisors(n): U := (m, t)->sum(2*m*binomial(2*m-k, k)*(m-k)!*(t-1)^k/(2*m-k), k=0..m): A := (n, i)->phi(n/dd[i])*(n/dd[i])^dd[i]*U(dd[i], 1-dd[i]/n)/n: for n from 3 to 28 do dd := d(n): B := [seq(A(n, j), j=1..nops(dd))]: a[n] := sum(B[i], i=1..nops(B)) od: seq(a[n], n=3..28); # Emeric Deutsch, Mar 08 2004
MATHEMATICA
u[m_, t_] := Sum[ 2m*Binomial[ 2m-k, k]*(m-k)!*((t-1)^k / (2m-k)), {k, 0, m}]; a[n_] := Sum[ EulerPhi[n/d] * (n/d)^d * (u[d, 1-d/n]/n), {d, Divisors[n]} ]; Table[ a[n], {n, 3, 22} ] (* Jean-François Alcover, Dec 07 2011, after Maple *)
CROSSREFS
Cf. A000179.
Sequence in context: A262171 A262172 A258830 * A280102 A366452 A277686
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Emeric Deutsch, Mar 08 2004
STATUS
approved