Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1683 N0664 #71 Dec 10 2024 12:29:40
%S 1,1,2,6,26,166,1626,25510,664666,29559718,2290267226,314039061414,
%T 77160820913242,34317392762489766,27859502236825957466,
%U 41575811106337540656038,114746581654195790543205466,588765612737696531880325270438,5642056933026209681424588087899226
%N Number of different types of binary trees of height n.
%C Two trees have the same type if they have the same number of nodes at each level. - _Chams Lahlou_, Jan 26 2019
%C Equals the number of partitions of 2^n-1 into powers of 2 (cf. A018819). a(n) = A018819(2^n-1) = binary partitions of 2^n-1. - _Paul D. Hanna_, Sep 22 2004
%D George E. Andrews, Peter Paule, Axel Riese and Volker Strehl, "MacMahon's Partition Analysis V: Bijections, recursions and magic squares," in Algebraic Combinatorics and Applications, edited by Anton Betten, Axel Kohnert, Reinhard Laue and Alfred Wassermann [Proceedings of ALCOMA, September 1999] (Springer, 2001), 1-39.
%D A. Cayley, "On a problem in the partition of numbers," Philosophical Magazine (4) 13 (1857), 245-248; reprinted in his Collected Math. Papers, Vol. 3, pp. 247-249. [From Don Knuth, Aug 17 2001.]
%D R. F. Churchhouse, Congruence properties of the binary partition function. Proc. Cambridge Philos. Soc. 66 1969 371-376.
%D R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
%D D. E. Knuth, Selected Papers on Analysis of Algorithms, p. 75 (gives asymptotic formula and lower bound).
%D H. Minc, The free commutative entropic logarithmetic. Proc. Roy. Soc. Edinburgh Sect. A 65 1959 177-192 (1959).
%D T. K. Moon (tmoon(AT)artemis.ece.usu.edu), Enumerations of binary trees, types of trees and the number of reversible variable length codes, submitted to Discrete Applied Mathematics, 2000.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A002449/b002449.txt">Table of n, a(n) for n = 0..50</a>
%H M. Cook and M. Kleber, <a href="https://doi.org/10.37236/1522">Tournament sequences and Meeussen sequences</a>, Electronic J. Comb. 7 (2000), #R44.
%H Olivier Danvy, <a href="https://arxiv.org/abs/2412.03127">Summa Summarum: Moessner's Theorem without Dynamic Programming</a>, arXiv:2412.03127 [cs.DM], 2024. See pp. 31, 33, 34.
%H Chams Lahlou, <a href="/A002449/a002449.pdf">A formula for some integer sequences that can be described by generating trees</a>
%F a(n) = A098539(n, 1). - _Paul D. Hanna_, Sep 13 2004
%F G.f. A(x) = F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1) + xF(x,2n) for n>0 with F(x,0)=1. - _Paul D. Hanna_, Apr 16 2007
%F From _Benedict W. J. Irwin_, Nov 16 2016: (Start)
%F Conjecture: a(n+2) = Sum_{i_1=1..2}Sum_{i_2=1..2*i_1}...Sum_{i_n=1..2*i_(n-1)} (2*i_n). For example:
%F a(3) = Sum_{i=1..2} 2*i.
%F a(4) = Sum_{i=1..2}Sum_{j=1..2*i} 2*j.
%F a(5) = Sum_{i=1..2}Sum_{j=1..2*i}Sum_{k=1..2*j} 2*k.
%F (End)
%F The conjecture is true: see Links. - _Chams Lahlou_, Jan 26 2019
%e G.f. = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 166*x^5 + 1626*x^6 + 25510*x^7 + ...
%p d := proc(n) option remember; if n<1 then 1 else sum(d(n-1),k=1..2*k) fi end; A002449 := n -> eval(d(n-1),k=1); # _Michael Kleber_, Dec 05 2000
%t lim = 16; p[0] = p[1] = 1; Do[If[OddQ[n], p[n] = p[n - 1], p[n] = p[n - 1] + p[n/2]], {n, 1, 2^lim - 1}]; a[n_] := p[2^n - 1]; Table[a[n], {n, 0, lim}] (* _Jean-François Alcover_, Sep 20 2011, after _Paul D. Hanna_ *)
%o (PARI) a(n)=local(A,B,C,m);A=matrix(1,1);A[1,1]=1; for(m=2,n+1,B=A^2;C=matrix(m,m);for(j=1,m, for(k=1,j, if(j<3 || k==j || k>m-1,C[j,k]=1,if(k==1,C[j,k]=B[j-1,1],C[j,k]=B[j-1,k-1])); ));A=C);A[n+1,1] \\ _Paul D. Hanna_
%o (PARI) a(n)=polcoeff(1/prod(k=0,n,1-x^(2^k)+O(x^(2^n))),2^n-1)
%o (PARI) {a(n, k=2) = if(n<2, n>=0, sum(i=1, k, a(n-1, 2*i)))}; /* _Michael Somos_, Nov 24 2016 */
%Y Cf. A001699, A056207, A098539, A018819.
%K nonn,nice,easy
%O 0,3
%A _N. J. A. Sloane_
%E Recurrence and more terms from _Michael Kleber_, Dec 05 2000