Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4596 N1961 #145 Sep 03 2024 00:58:32
%S 9,8,6,9,6,0,4,4,0,1,0,8,9,3,5,8,6,1,8,8,3,4,4,9,0,9,9,9,8,7,6,1,5,1,
%T 1,3,5,3,1,3,6,9,9,4,0,7,2,4,0,7,9,0,6,2,6,4,1,3,3,4,9,3,7,6,2,2,0,0,
%U 4,4,8,2,2,4,1,9,2,0,5,2,4,3,0,0,1,7,7,3,4,0,3,7,1,8,5,5,2,2,3,1,8,2,4,0,2
%N Decimal expansion of Pi^2.
%C Also equals the volume of revolution of the sine or cosine curve for one full period, Integral_{x=0..2*Pi} sin(x)^2 dx. - _Robert G. Wilson v_, Dec 15 2005
%C Equals Sum_{n>0} 20/A026424(n)^2 where A026424 are the integers such that the number of prime divisors (counted with multiplicity) is odd. - _Michel Lagneau_, Oct 23 2015
%D W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 76.
%H Harry J. Smith, <a href="/A002388/b002388.txt">Table of n, a(n) for n = 1..20000</a>
%H Mohammad K. Azarian, <a href="http://projecteuclid.org/euclid.mjms/1312233136">Al-Risala al-Muhitiyya: A Summary</a> (The Treatise on the Circumference), Missouri Journal of Mathematical Sciences, Vol. 22, No. 2, 2010, pp. 64-85.
%H D. H. Bailey and J. M. Borwein, <a href="http://www.ams.org/notices/200505/fea-borwein.pdf">Experimental Mathematics: Examples, Methods and Implications</a>, Notices AMS, 52 (No. 5 2005), 502-514.
%H David H. Bailey, Jonathan M. Borwein, Andrew Mattingly, and Glenn Wightwick, <a href="http://www.ams.org/notices/201307/rnoti-p844.pdf">The Computation of Previously Inaccessible Digits of (Pi)^2 and Catalan's Constant</a>, Notices AMS, 60 (No. 7 2013), 844-854.
%H N. D. Elkies, <a href="http://www.math.harvard.edu/~elkies/Misc/pi10.pdf">Why is (Pi)^2 so close to 10?</a>
%H Melissa Larson, <a href="https://www.d.umn.edu/~jgreene/masters_reports/BBP%20Paper%20final.pdf">Verifying and discovering BBP-type formulas</a>, 2008.
%H Simon Plouffe, <a href="https://web.archive.org/web/20150911212749/http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap75.html">Pi^2 to 10000 digits</a>.
%H Simon Plouffe, Plouffe's Inverter, <a href="http://www.plouffe.fr/simon/constants/pipi.txt">Pi^2 to 10000 digits</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula">Bailey-Borwein-Plouffe formula</a>.
%H Herbert S. Wilf, <a href="https://doi.org/10.46298/dmtcs.265">Accelerated series for universal constants, by the WZ method</a>, Discrete Mathematics and Theoretical Computer Science, Vol 3, No 4 (1999).
%H <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F Pi^2 = 11/2 + 16 * Sum_{k>=2} (1+k-k^3)/(1-k^2)^3. - _Alexander R. Povolotsky_, May 04 2009
%F Pi^2 = 3*(Sum_{n>=1} ((2*n+1)^2/Sum_{k=1..n} k^3)/4 - 1). - _Alexander R. Povolotsky_, Jan 14 2011
%F Pi^2 = (3/2)*(Sum_{n>=1} ((7*n^2+2*n-2)/(2*n^2-1)/(n+1)^5) - zeta(3) - 3*zeta(5) + 22 - 7*polygamma(0,1-1/sqrt(2)) + 5*sqrt(2)*polygamma(0,1-1/sqrt(2)) - 7*polygamma(0,1+1/sqrt(2)) - 5*sqrt(2)*polygamma(0,1+1/sqrt(2)) - 14*EulerGamma). - _Alexander R. Povolotsky_, Aug 13 2011
%F Also equals 32*Integral_{x=0..1} arctan(x)/(1+x^2) dx. - _Jean-François Alcover_, Mar 25 2013
%F From _Peter Bala_, Feb 05 2015: (Start)
%F Pi^2 = 20 * Integral_{x = 0 .. log(phi)} x*coth(x) dx, where phi = (1/2)*(1 + sqrt(5)) is the golden ratio.
%F Pi^2 = 10 * Sum_{k >= 0} binomial(2*k,k)*(1/(2*k + 1)^2)*(-1/16)^k. Similar series expansions hold for Pi/3 (see A019670) and (7*/216)*Pi^3 (see A091925).
%F The integer sequences A(n) := 2^n*(2*n + 1)!^2/n! and B(n) := A(n)*( Sum_{k = 0..n} binomial(2*k,k)*1/(2*k + 1)^2*(-1/16)^k ) both satisfy the second order recurrence equation u(n) = (24*n^3 + 44*n^2 + 2*n + 1)*u(n-1) + 8*(n - 1)*(2*n - 1)^5*u(n-2). From this observation we can obtain the continued fraction expansion Pi^2/10 = 1 - 1/(72 + 8*3^5/(373 + 8*2*5^5/(1051 + ... + 8*(n - 1)*(2*n - 1)^5/((24*n^3 + 44*n^2 + 2*n + 1) + ... )))). Cf. A093954. (End)
%F Pi^2 = A304656 * A093602 = (gamma(0, 1/6) - gamma(0, 5/6))*(gamma(0, 2/6) - gamma(0, 4/6)), where gamma(n,x) are the generalized Stieltjes constants. This formula can also be expressed by the polygamma function. - _Peter Luschny_, May 16 2018
%F Equals 8 + Sum_{k>=1} 1/(k^2 - 1/4)^2 = -8 + Sum_{k>=0} 1/(k^2 - 1/4)^2. - _Amiram Eldar_, Aug 21 2020
%F From _Peter Bala_, Dec 10 2021: (Start)
%F Pi^2 = (2^6)*Sum_{n >= 1} n^2/(4*n^2 - 1)^2 = (2^11)*Sum_{n >= 1} n^2/ ((4*n^2 - 1)^2*(4*n^2 - 3^2)^2) = ((2^19)*(3^2)/7) * Sum_{n >= 1} n^2/((4*n^2 - 1)^2*(4*n^2 - 3^2)^2*(4*n^2 - 5^2)^2).
%F More generally, it appears that for k >= 0 we have Pi^2 = (2*k+1)*2^(4*k+6) * (2*k)!^4/(4*k)! * Sum_{n >= 1} n^2/((4*n^2 - 1)^2*...*(4*n^2 - (2*k+1)^2)^2).
%F It also appears that for k >= 0 we have Pi^2 = (-1)^k * 2^(6*k+8)*(2*k+1)^3/(6*k+1) * ((2*k)!^6 * (3*k)!)/(k!^3 * (6*k)!) * Sum_{n >= 1} n^2/((4*n^2 - 1)^3*...*(4*n^2 - (2*k+1)^2)^3). (End)
%F From _Peter Bala_, Oct 27 20232: (Start)
%F Pi^2 = 10 - Sum_{n >= 1} 1/(n*(n + 1))^3.
%F Pi^2 = 6217/630 + (648/35)*Sum_{n >= 1} 1/(n*(n + 1)*(n + 2)*(n + 3))^3.
%F The general result (verified using the WZ method - see Wilf) is : for n >= 0,
%F Pi^2 = A(n) + (-1)^(n+1) * B(n)*Sum_{k >= 1} 1/(k*(k + 1)*...*(k + 2*n + 1))^3, where A(n) = 10 - Sum_{i = 1..n} (-1)^(i+1) * (56*i^2 + 24*i + 3)*(2*i)!^3*(3*i)!/(2*i^2*(2*i + 1)*(6*i + 1)!*i!^3) and B(n) = (2*n + 1)!^6 * (3*n)! / ( (2*n + 1)*(6*n + 1)!*n!^3 ).
%F Letting n -> oo gives the fast converging alternating series
%F Pi^2 = 10 - Sum_{i >= 1} (-1)^(i+1) * (56*i^2 + 24*i + 3)*(2*i)!^3 * (3*i)!/(2*i^2*(2*i + 1)*(6*i + 1)!*i!^3). The i-th summand of the series is asymptotic to (14/3) * 1/(i^2 * 27^i) so taking 70 terms of the series gives a value for Pi^2 accurate to more than 100 decimal places.
%F The series representation Pi^2 = 3*Sum_{k >= 1} (2*k)/k^3 can be accelerated to give the faster converging series
%F Pi^2 = 99/10 - (8/5)*Sum_{k >= 1} (2*k + 2)/(k*(k + 1)*(k + 2))^3 and
%F Pi^2 = 54715/5544 + (41472/385)*Sum_{k >= 1} (2*k + 4)/(k*(k + 1)*(k + 2)*(k + 3)*(k + 4))^3.
%F The general result is: for n >= 1, Pi^2 = C(n) + (-1)^n * D(n)*Sum_{k >= 1} (2*k + 2*n)/(k*(k + 1)*...*(k + 2*n))^3, where C(n) = A(n) - 10*(-1)^n*(3*n)!*(2*n)!^3/((2*n + 1)*n!^3*(6*n + 1)!) and D(n) = (2*n)!^6 * (3*n)! / ( 2*n*(6*n - 1)!*n!^3 ). (End)
%e 9.869604401089358618834490999876151135313699407240790626413349376220044...
%p Digits:=100: evalf(Pi^2); # _Wesley Ivan Hurt_, Jul 13 2014
%t RealDigits[Pi^2, 10, 111][[1]] (* _Robert G. Wilson v_, Dec 15 2005 *)
%o (PARI) default(realprecision, 20080); x=Pi^2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002388.txt", n, " ", d)); \\ _Harry J. Smith_, May 31 2009
%o (Magma) R:= RealField(100); Pi(R)^2; // _G. C. Greubel_, Mar 08 2018
%o (Python) # Use some guard digits when computing.
%o # BBP formula (9 / 8) P(2, 64, 6, (16, -24, -8, -6, 1, 0)).
%o from decimal import Decimal as dec, getcontext
%o def BBPpi2(n: int) -> dec:
%o getcontext().prec = n
%o s = dec(0); f = dec(1); g = dec(64)
%o for k in range(int(n * 0.5536546824812272) + 1):
%o sixk = dec(6 * k)
%o s += f * ( dec(16) / (sixk + 1) ** 2 - dec(24) / (sixk + 2) ** 2
%o - dec(8) / (sixk + 3) ** 2 - dec(6) / (sixk + 4) ** 2
%o + dec(1) / (sixk + 5) ** 2 )
%o f /= g
%o return (s * dec(9)) / dec(8)
%o print(BBPpi2(200)) # _Peter Luschny_, Nov 03 2023
%Y Cf. A102753, A058284, A019670, A091925, A093954, A093602, A304656.
%K nonn,cons
%O 1,1
%A _N. J. A. Sloane_
%E More terms from _Robert G. Wilson v_, Dec 15 2005