Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0549 N0198 #29 Jan 29 2022 01:08:37
%S 1,2,3,4,6,8,9,12,15,16,21,24,24,32,36,36,45,48,48,60,66,64,75,84,81,
%T 96,105,96,120,128,120,144,144,144,171,180,168,192,210,192,231,240,
%U 216,264,276,256,294,300,288,336,351,324,360,384,360,420,435,384,465
%N Degree of rational Poncelet porism of n-gon.
%D Kerawala, S. M.; Poncelet Porism in Two Circles. Bull. Calcutta Math. Soc. 39, 85-105, 1947.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Reinhard Zumkeller, <a href="/A002348/b002348.txt">Table of n, a(n) for n = 3..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PonceletsPorism.html">Poncelet's Porism</a>
%e For a triangle the degree is 1, thus a(3) = 1. - _Michael Somos_, Dec 07 2018
%t Poncelet[ n_Integer /; n >= 3 ] := Module[ {p, a, i}, {p, a}=Transpose[ FactorInteger[ n ] ];
%t If[ p[[1]]==2, 4^a[[1]] Product[ p[[i]]^(2(a[[i]] - 1))(p[[i]]^2 - 1), {i, 2, Length[ p ]} ]/8, (* Else *) Product[ p[[i]]^(2(a[[i]] - 1))(p[[i]]^2 - 1), {i, Length[ p ]} ]/8 ] ]
%o (PARI) {a(n) = my(p, e); if( n<3, 0, p=factor(n)~; e=p[2,]; p=p[1,]; if( p[1]==2, 4^e[1], 1) * prod(i=1 + (p[1]==2), length(p), p[i]^(2*(e[i] - 1)) * (p[i]^2 - 1)) / 8)}; /* _Michael Somos_, Dec 09 1999 */
%o (Haskell)
%o a002348 n = product (zipWith d ps es) * 4 ^ e0 `div` 8 where
%o d p e = (p ^ 2 - 1) * p ^ e
%o e0 = if even n then head $ a124010_row n else 0
%o es = map ((* 2) . subtract 1) $
%o if even n then tail $ a124010_row n else a124010_row n
%o ps = if even n then tail $ a027748_row n else a027748_row n
%o -- _Reinhard Zumkeller_, Mar 18 2012
%Y Cf. A027748, A124010.
%K nonn,nice
%O 3,2
%A _N. J. A. Sloane_
%E Extended with Mathematica program by _Eric W. Weisstein_