Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0444 N0166 #27 Jul 14 2019 08:12:24
%S 1,1,1,2,3,4,3,5,3,6,1,2,6,7,4,5,8,3,9,7,6,9,1,2,6,11,4,10,9,3,12,9,
%T 12,13,8,3,14,12,13,6,1,2,12,11,5,15,16,9,3,13,8,15,12,17,16,6,14,15,
%U 10,3,17,18,11,9,15,4,18,9,20,15,7,8,3,20,21,21,10,18,19,16,11,22,18
%N Numbers y such that p = x^2 + 2y^2, with prime p = A033203(n).
%C The corresponding x numbers are given in A002332.
%D A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
%D D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A002333/b002333.txt">Table of n, a(n) for n = 1..1000</a>
%H A. J. C. Cunningham, <a href="/A002330/a002330.pdf">Quadratic Partitions</a>, Hodgson, London, 1904. [Annotated scans of selected pages]
%H D. S., <a href="https://doi.org/10.1090/S0025-5718-69-99644-6">Review of A Table of Primes of Z[(-2)^(1/2)] by J. H. Jordan and J. R. Rabung</a>, Math. Comp., 23 (1969), p. 458.
%t g[p_] := For[y=1, True, y++, If[IntegerQ[Sqrt[p-2y y]], Return[y]]]; g/@Select[Prime/@Range[1, 200], Mod[ #, 8]<4&]
%Y Cf. A002332.
%K nonn
%O 1,4
%A _N. J. A. Sloane_
%E More terms from _Dean Hickerson_, Oct 07 2001