login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of square root of 2.
(Formerly M3195 N1291)
317

%I M3195 N1291 #255 Dec 30 2024 17:21:54

%S 1,4,1,4,2,1,3,5,6,2,3,7,3,0,9,5,0,4,8,8,0,1,6,8,8,7,2,4,2,0,9,6,9,8,

%T 0,7,8,5,6,9,6,7,1,8,7,5,3,7,6,9,4,8,0,7,3,1,7,6,6,7,9,7,3,7,9,9,0,7,

%U 3,2,4,7,8,4,6,2,1,0,7,0,3,8,8,5,0,3,8,7,5,3,4,3,2,7,6,4,1,5,7

%N Decimal expansion of square root of 2.

%C Sometimes called Pythagoras's constant.

%C Its continued fraction expansion is [1; 2, 2, 2, ...] (see A040000). - _Arkadiusz Wesolowski_, Mar 10 2012

%C The discovery of irrational numbers is attributed to Hippasus of Metapontum, who may have proved that sqrt(2) is not a rational number; thus sqrt(2) is often regarded as the earliest known irrational number. - _Clark Kimberling_, Oct 12 2017

%C From _Clark Kimberling_, Oct 12 2017: (Start)

%C In the first million digits,

%C 0 occurs 99814 times;

%C 1 occurs 99925 times;

%C 2 occurs 100436 times;

%C 3 occurs 100190 times;

%C 4 occurs 100024 times;

%C 5 occurs 100155 times;

%C 6 occurs 99886 times;

%C 7 occurs 100008 times;

%C 8 occurs 100441 times;

%C 9 occurs 100121 times. (End)

%C Diameter of a sphere whose surface area equals 2*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - _Omar E. Pol_, Nov 10 2018

%C Sqrt(2) = 1 + area of region bounded by y = sin x, y = cos x, and x = 0. - _Clark Kimberling_, Jul 03 2020

%C Also aspect ratio of the ISO 216 standard for paper sizes. - _Stefano Spezia_, Feb 24 2021

%C The standard deviation of a roll of a 5-sided die. - _Mohammed Yaseen_, Feb 23 2023

%C From _Michal Paulovic_, Mar 22 2023: (Start)

%C The length of a unit square diagonal.

%C The infinite tetration (power tower) sqrt(2)^(sqrt(2)^(sqrt(2)^(...))) equals 2 from the identity (x^(1/x))^((x^(1/x))^((x^(1/x))^(...))) = x where 1/e <= x <= e. (End)

%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.1.

%D David Flannery, The Square Root of 2, Copernicus Books Springer-Praxis Pub. 2006.

%D Martin Gardner, Gardner's Workout, Chapter 2 "The Square Root of 2=1.414213562373095..." pp. 9-19 A. K. Peters MA 2002.

%D B. Rittaud, Le fabuleux destin de sqrt(2), Le Pommier, Paris 2006.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, pp. 34-35.

%H Harry J. Smith, <a href="/A002193/b002193.txt">Table of n, a(n) for n = 1..20000</a>

%H D. and J. Ensley, <a href="https://web.archive.org/web/20100613153947/http://www.maa.org/reviews/roottwo.html">Review of "The Square Root of 2" by D. Flannery</a>.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020.

%H M. F. Jones, <a href="http://www.jstor.org/stable/2004806">22900D approximations to the square roots of the primes less than 100</a>, Math. Comp., 22 (1968), 234-235.

%H I. Khavkine, PlanetMath.org, <a href="https://planetmath.org/proofthatsqrt2isirrational">square root of 2 is irrational</a>.

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/sqrt_base">Index of expansions of sqrt(d) in base b</a>.

%H C. E. Larson, <a href="https://arxiv.org/abs/2005.03878">(Avoiding) Proof by Contradiction: sqrt(2) is Not Rational</a>, arXiv:2005.03878 [math.HO], 2020.

%H Robert Nemiroff and Jerry Bonnell, <a href="http://antwrp.gsfc.nasa.gov/htmltest/gifcity/sqrt2.1mil">The Square Root of Two to 1 Million Digits</a>.

%H Robert Nemiroff and Jerry Bonnell, <a href="https://web.archive.org/web/20070930182428/http://www.ibiblio.org/pub/docs/books/gutenberg/etext94/2sqrt10a.txt">The Square Root of Two to 5 million digits</a>.

%H Robert Nemiroff and Jerry Bonnell, <a href="http://antwrp.gsfc.nasa.gov/htmltest/gifcity/sqrt2.10mil">The first 10 million digits of the square root of 2</a>.

%H Simon Plouffe, Plouffe's Inverter, <a href="http://www.plouffe.fr/simon/constants/sqrt2.txt">The square root of 2 to 10 million digits</a>.

%H Simon Plouffe, <a href="http://www.plouffe.fr/simon/gendev/141421.html">Generalized expansion of real constants</a>.

%H M. Ripa and G. Morelli, <a href="http://www.iqsociety.org/general/documents/Retro_analytical_Reasoning_IQ_tests_for_the_High_Range.pdf">Retro-analytical Reasoning IQ tests for the High Range</a>, 2013.

%H Horace S. Uhler, <a href="https://doi.org/10.1073/pnas.37.1.63">Many-Figure Approximations To Sqrt(2), And Distribution Of Digits In Sqrt(2) And 1/Sqrt(2)</a>, Proc. Nat. Acad. Sci. U. S. A. 37, (1951). 63-67.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagorassConstant.html">Pythagoras's Constant</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquareRoot.html">Square Root</a>.

%H <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>.

%F Sqrt(2) = 14 * Sum_{n >= 0} (A001790(n)/2^A005187(floor(n/2)) * 10^(-2n-1)) where A001790(n) are numerators in expansion of 1/sqrt(1-x) and the denominators in expansion of 1/sqrt(1-x) are 2^A005187(n). 14 = 2*7, see A010503 (expansion of 1/sqrt(2)). - _Gerald McGarvey_, Jan 01 2005

%F Limit_{n -> +oo} (1/n)*(Sum_{k = 1..n} frac(sqrt(1+zeta(k+1)))) = 1/(1+sqrt(2)). - _Yalcin Aktar_, Jul 14 2005

%F sqrt(2) = 2 + n*A167199(n-1)/A167199(n) as n -> infinity (conjecture). - _Mats Granvik_, Oct 30 2009

%F sqrt(2) = limit as n goes to infinity of A179807(n+1)/A179807(n) - 1. - _Mats Granvik_, Feb 15 2011

%F sqrt(2) = Product_{l=0..k-1} 2*cos((2*l+1)*Pi/(4*k)) = (Product_{l=0..k-1} R(2*l+1,rho(4*k)) - 1), identical for k >= 1, with the row polynomials R(n, x) from A127672 and rho(4*k) := 2*cos(Pi/(4*k)) is the length ratio (smallest diagonal)/side in a regular (4*k)-gon. From the product formula given in a Oct 21 2013 formula contribution to A056594, with n -> 2*k, using cos(Pi-alpha) = - cos(alpha) to obtain 2 for the square of the present product. - _Wolfdieter Lang_, Oct 22 2013

%F If x = sqrt(2), 1/log(x - 1) + 1/log(x + 1) = 0. - _Kritsada Moomuang_, Jul 10 2020

%F From _Amiram Eldar_, Jul 25 2020: (Start)

%F Equals Product_{k>=0} (1 + (-1)^k/(2*k + 1)).

%F Equals Sum_{k>=0} binomial(2*k,k)/8^k. (End)

%F Equals i^(1/2) + i^(-1/2). - _Gary W. Adamson_, Jul 11 2022

%F Equals (sqrt(2) + (sqrt(2) + (sqrt(2) + ...)^(1/3))^(1/3))^(1/3). - _Michal Paulovic_, Mar 22 2023

%F Equals 1 + Sum_{k>=1} (-1)^(k-1)/(2^(2*k)*(2*k - 1))*binomial(2*k,k) [Newton]. - _Stefano Spezia_, Oct 15 2024

%F From _Antonio Graciá Llorente_, Dec 19 2024: (Start)

%F Equals Sum_{k>=0} 2*k*binomial(2*k,k)/8^k.

%F Equals Product_{k>=2} k/sqrt(k^2 + 1).

%F Equals Product_{k>=0} (6*k + 3)/((6*k + 3) - (-1)^k).

%F Equals Product_{k>=1} (2*k + 1)/((2*k + 1) + (-1)^k).

%F Equals Product_{k>=0} ((4*k + 3)*(4*k + 1 + (-1)^k))/((4*k + 1)*(4*k + 3 + (-1)^k)). (End)

%e 1.41421356237309504880168872420969807856967187537694807317667...

%p Digits:=100; evalf(sqrt(2)); # _Wesley Ivan Hurt_, Dec 04 2013

%t RealDigits[N[2^(1/2), 128]] (* _Vladimir Joseph Stephan Orlovsky_, Dec 25 2008 *)

%o (PARI) default(realprecision, 20080); x=sqrt(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002193.txt", n, " ", d)); \\ _Harry J. Smith_, Apr 21 2009

%o (PARI) r=0; x=2; /* Digit-by-digit method */

%o for(digits=1,100,{d=0;while((20*r+d)*d <= x,d++);

%o d--; /* while loop overshoots correct digit */

%o print(d);x=100*(x-(20*r+d)*d);r=10*r+d}) \\ _Michael B. Porter_, Oct 20 2009

%o (PARI) \\ Works in v2.15.0; n = 100 decimal places

%o my(n=100); digits(floor(10^n*quadgen(8))) \\ _Michal Paulovic_, Mar 22 2023

%o (Maxima) fpprec: 100$ ev(bfloat(sqrt(2))); /* _Martin Ettl_, Oct 17 2012 */

%o (Haskell) -- After _Michael B. Porter_'s PARI program.

%o a002193 n = a002193_list !! (n-1)

%o a002193_list = w 2 0 where

%o w x r = dig : w (100 * (x - (20 * r + dig) * dig)) (10 * r + dig)

%o where dig = head (dropWhile (\d -> (20 * r + d) * d < x) [0..]) - 1

%o -- _Reinhard Zumkeller_, Nov 22 2013

%Y Cf. A020807, A010503, A001790, A005187.

%Y Cf. A004539 (binary version).

%K nonn,cons,changed

%O 1,2

%A _N. J. A. Sloane_