Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4364 N1829 #26 Jan 29 2022 01:14:29
%S 1,1,1,7,19,41,751,989,2857,16067,2171465,1364651,8181904909,90241897,
%T 35310023,15043611773,55294720874657,203732352169,69028763155644023,
%U 19470140241329,1022779523247467,396760150748100749
%N Numerators of Cotesian numbers (not in lowest terms): A002176(n)*C(n,0).
%D W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A002177/b002177.txt">Table of n, a(n) for n = 1..100</a>
%H W. M. Johnson, <a href="/A002176/a002176.pdf">On Cotesian numbers: their history, computation and values to n=20</a>, Quart. J. Pure Appl. Math., 46 (1914), 52-65. [Annotated scanned copy]
%t cn[n_, 0] := Sum[ n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]* Sum[ n^(j+m)*StirlingS1[k, j]* StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; a[n_] := cn[n, 0]*LCM @@ Table[ Denominator[cn[n, k]], {k, 0, n}]; Table[a[n], {n, 1, 22}] (* _Jean-François Alcover_, Oct 25 2011 *)
%o (PARI) cn(n) = mattranspose( matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ]; \\ vector of quadrature formula coefficients via matrix solution
%o (PARI) ncn(n) = denominator(cn(n)) * cn(n);
%o (PARI) nk(n,k) = if(k<0 || k>n, 0, ncn(n)[ k+1 ]);
%o (PARI) A002177(n) = nk(n,0);
%Y Cf. A100640/A100641, A100620/A100621, A002176-A002179.
%K nonn,easy,nice
%O 1,4
%A _N. J. A. Sloane_
%E More terms from _Michael Somos_