Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I M2841 N1142 #28 Jan 15 2025 17:05:50
%S 1,3,10,31,97,306,961,3020,9489,29809,93648,294204,924269,2903677,
%T 9122171,28658146,90032221,282844564,888582403,2791563950,8769956796,
%U 27551631843,86556004192,271923706894,854273519914,2683779414318,8431341691876,26487841119104,83214007069230
%N Nearest integer to Pi^n.
%D A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 122.
%D J. T. Peters, Ten-Place Logarithm Table. Vols. 1 and 2, rev. ed. Ungar, NY, 1957, Vol. 1 (Appendix), p. 1.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%e a(0) = 1 because Pi^0 = 1;
%e a(2) = 10 because Pi^2 = 9.8696...;
%e a(10) = 93648 because Pi^10 = 93648.047476...
%p a := []: Digits := 1000: for n from 0 to 50 do: a := [op(a),round(Pi^n)]: od: seq(a[i+1],i=0..50);
%t Round[Pi^Range[0,40]] (* _Harvey P. Dale_, Jun 10 2024 *)
%o (PARI) apply( A002160(n)=Pi^n\/1, [0..50]) \\ An error message will say so if default(realprecision) must be increased. - _M. F. Hasler_, May 27 2018
%o (Sage) [round(pi^n) for n in range(0,29)] # _Stefano Spezia_, Jan 15 2025
%Y Cf. A000227 (e^n), A001672 (floor(Pi^n)), A001673 (ceiling(Pi^n)).
%K nonn,easy,changed
%O 0,2
%A _N. J. A. Sloane_
%E More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 29 2003
%E Edited by _M. F. Hasler_, May 27 2018