Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4810 N2057 #66 Dec 12 2021 20:35:49
%S 1,11,301,15371,1261501,151846331,25201039501,5515342166891,
%T 1538993024478301,533289474412481051,224671379367784281901,
%U 113091403397683832932811,67032545884354589043714301,46211522130188693681603906171
%N Glaisher's H' numbers.
%C a(n) mod 9 = 1,2,4,8,7,5 repeated period 6 (A153130, see also A001370). a(n) mod 10 = 1. - _Paul Curtz_, Sep 10 2009
%D A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A002114/b002114.txt">Table of n, a(n) for n = 1..100</a>
%H J. W. L. Glaisher, <a href="https://doi.org/10.1112/plms/s1-31.1.216">On a set of coefficients analogous to the Eulerian numbers</a>, Proc. London Math. Soc., 31 (1899), 216-235.
%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010. [Author's named corrected by _N. J. A. Sloane_, Dec 12 2021]
%H <a href="/index/Ge#Glaisher">Index entries for sequences related to Glaisher's numbers</a>
%F H'(n) = H(n)/3, where H(n)=2^(2n+1)*I(n) (see A002112) and e.g.f. for (-1)^n*I(n) is (3/2)/(1+exp(x)+exp(-x)) (see A047788, A047789).
%F H'(n) = A000436(n)/2^(2n+1). - _Philippe Deléham_, Jan 17 2004
%F For n > 0, H'(n) = Sum{k = 0..n, T(n, k)*9^(n-k)*2^(k-1) }; where DELTA is the operator defined in A084938, T(n, k) is the triangle, read by rows, given by :[0, 1, 0, 4, 0, 9, 0, 16, 0, 25, ...] DELTA [1, 0, 10, 0, 28, 0, 55, 0, 90, ..]= {1}; {0, 1}; {0, 1, 1}; {0, 1, 12, 1}; {0, 1, 63, 123, 1}; {0, 1, 274, 2366, 1234, 1}; ... For 1, 10, 28, 55, 90, 136, ... see A060544 or A060544. - _Philippe Deléham_, Jan 17 2004
%F E.g.f. 1/2*1/(2*cos(x)-1). a(n)=sum(sum(binomial(k,j)*(-1)^(k-j+1)*1/2^(j-1)*sum((-1)^(n)*binomial(j,i)*(2*i-j)^(2*n),i,0,floor((j-1)/2)),j,0,k)*(-2)^(k-1),k,1,2*n), n>0. - _Vladimir Kruchinin_, Aug 05 2010
%F E.g.f.: E(x)= x^2/(G(0)-x^2) ; G(k)= 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step ). - _Sergei N. Gladkovskii_, Jan 03 2012
%F If E(x)=Sum(k=0,1,..., a(k+1)*x^(2k+2)), then A002114(k) = a(k+1)*(2*k+2)!. - _Sergei N. Gladkovskii_, Jan 09 2012
%F a(n) ~ (2*n)! * 3^(2*n+1/2) / Pi^(2*n+1). - _Vaclav Kotesovec_, Feb 26 2014
%F a(n) = (-1)^n*6^(2*n)*(zeta(-n*2,1/3)-zeta(-n*2,5/6)), where zeta(a, z) is the generalized Riemann zeta function.
%F From _Vaclav Kotesovec_, May 05 2020: (Start)
%F a(n) = (2*n)! * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (sqrt(3)*(2*Pi)^(2*n+1)).
%F a(n) = (-1)^(n+1) * Bernoulli(2*n) * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (4*Pi*sqrt(3)*zeta(2*n)). (End)
%F Conjectural e.g.f.: Sum_{n >= 1} (-1)^n*Product_{k = 1..n} (1 - exp(A007310(k)*z) ) = z + 11*z^2/2! + 301*z^3/3! + .... - _Peter Bala_, Dec 09 2021
%p a := n -> (-1)^n*6^(2*n)*(Zeta(0,-n*2,1/3)-Zeta(0,-n*2, 5/6)):
%p seq(a(n), n=1..14);
%t Select[Rest[With[{nn=28},CoefficientList[Series[1/(2 (2Cos[x]-1)), {x,0,nn}], x]Range[0,nn]!]],#!=0&] (* _Harvey P. Dale_, Jul 27 2011 *)
%t FullSimplify[Table[(-1)^(s+1) * BernoulliB[2*s] * (Zeta[2*s + 1, 1/6] - Zeta[2*s + 1, 5/6]) / (4*Pi*Sqrt[3]*Zeta[2*s]), {s, 1, 20}]] (* _Vaclav Kotesovec_, May 05 2020 *)
%o (Maxima)
%o a(n) := sum(sum(binomial(k,j)*(-1)^(k-j+1)*1/2^(j-1)*sum((-1)^(n)*binomial(j,i)*(2*i-j)^(2*n),i,0,floor((j-1)/2)),j,0,k)*(-2)^(k-1),k,1,2*n) (* _Vladimir Kruchinin_, Aug 05 2010 *)
%K nice,easy,nonn
%O 1,2
%A _N. J. A. Sloane_