Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2082 N0823 #69 Dec 24 2019 00:50:19
%S 1,2,15,150,1707,20910,268616,3567400,48555069,673458874,9481557398,
%T 135119529972,1944997539623,28235172753886,412850231439153,
%U 6074299605748746,89857589279037102,1335623521633805028
%N Coefficients of expansion of Jacobi nome q in certain powers of (1/2)*(1 - sqrt(k')) / (1 + sqrt(k')).
%C The Fricke reference has equation q^(1/4) = (sqrt(k) / 2) + 2(sqrt(k) / 2)^5 + 15(sqrt(k) / 2)^9 + 150(sqrt(k) / 2)^13 + 1707(sqrt(k) / 2)^17 + ... - _Michael Somos_, Jul 13 2013
%C a(n)^(1/n) tends to 16. - _Vaclav Kotesovec_, Jul 02 2016
%C a(n-1) appears in the expansion of the Jacobi nome q as q = x*Sum_{n >= 1} a(n-1)*x^(4*n) with x = (1/2)*(1 - sqrt(k')) / (1 + sqrt(k')), with the complementary modulus k' of elliptic functions. See, e.g., the Fricke, Kneser and Tricomi references, and the g.f. with example below. - _Wolfdieter Lang_, Jul 09 2016
%C The King-Canfield (1992) reference shows how this sequence is used in real life - it is one of the ingredients in solving the general quintic equation using elliptic functions. - _N. J. A. Sloane_, Dec 24 2019
%D King, R. B., and E. R. Canfield. "Icosahedral symmetry and the quintic equation." Computers & Mathematics with Applications 24.3 (1992): 13-28. See Eq. (4.28).
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D F. Tricomi, Elliptische Funktionen (German translation by M. Krafft of: Funzioni ellittiche), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1948, p. 176, eq. (3.88).
%D Z. X. Wang and D. R. Guo, Special Functions, World Scientific Publishing, 1989, page 512.
%H Vaclav Kotesovec, <a href="/A002103/b002103.txt">Table of n, a(n) for n = 0..800</a> (terms 0..200 from Vincenzo Librandi)
%H J. N. Bramhall, <a href="http://dx.doi.org/10.1145/366622.366629">An iterative method for inversion of power series</a>, Comm. ACM 4 1961 317-318.
%H H. R. P. Ferguson, D. E. Nielsen and G. Cook, <a href="http://dx.doi.org/10.1090/S0025-5718-1975-0367322-8">A partition formula for the integer coefficients of the theta function nome</a>, Math. Comp., 29 (1975), 851-855.
%H H. E. Fettis, <a href="http://dx.doi.org/10.1007/BF02234768">Note on the computation of Jacobi's Nome and its inverse</a>, Computing, 4 (1969), 202-206.
%H A. Fletcher, <a href="http://dx.doi.org/10.1090/S0025-5718-1948-0030295-5">Guide to tables of elliptic functions</a>, Math. Tables Other Aids Computation, 3 (1948), 229-281, Section III, p. 234. MR0030295 (10,741b)
%H R. Fricke, <a href="http://dx.doi.org/10.1007/978-3-642-20954-3_1">Die elliptischen Funktionen und ihre Anwendungen</a>, Dritter Teil, Springer-Verlag, 2012, p. 3, eq. (6)
%H C. Hermite, <a href="/A002639/a002639.pdf">Annotated scan of a page from the Oeuvres</a>, together with a page from Math. Tables Aids Comp., Vol. 3, 1948 that refers to it.
%H A. Kneser, <a href="https://eudml.org/doc/149645">Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen</a>, J. reine u. angew. Math. 157, 1927, 209 - 218, p.218.
%H A. N. Lowan, G. Blanch and W. Horenstein, <a href="http://dx.doi.org/10.1090/S0002-9904-1942-07770-6">On the inversion of the q-series associated with Jacobian elliptic functions</a>, Bull. Amer. Math. Soc., 48 (1942), 737-738.
%H H. P. Robinson, <a href="/A001936/a001936.pdf">Letter to N. J. A. Sloane, Oct 07, 1976</a>
%H R. E. Shafer, <a href="/A002103/a002103.pdf">Review of Fettis (1969)</a>, Computing Reviews, July 1970, page 401 [Annotated scanned copy]
%F a(n) = Sum {1<=k<=n} (-1)^k Sum { (4n+k)! C_1^b_1 ... C_n^b_n / (4n+1)! b_1! ... b_n! }, where the inner sum is over all partitions k = b_1 + ... + b_n, n = Sum i*b_i, b_i >= 0 and C_0=1, C_1=-2, C_2=5, C_3=-10 ... is given by (-1)^n*A001936(n).
%F G.f.: Series_Reversion( (theta_3(x) - theta_3(-x)) / (4*theta_3(x^4)) ) = Sum_{n>=0} a(n)*x^(4*n+1), where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2). - _Paul D. Hanna_, Jan 07 2014
%e G.f. = 1 + 2*x + 15*x^2 + 150*x^3 + 1707*x^4 + 20910*x^5 + 268616*x^6 + 3567400*x^7 + ...
%e Jacobi nome q = x + 2x^5 + 15x^9 + 150x^13 + ... where x = q - 2q^5 + 5q^9 - 10q^13 + ... coefficients from A079006.
%e The series reversion of q = x + 2*x^5 + 15*x^9 + 150*x^13 + 1707*x^17 + ... equals (x + x^9 + x^25 + x^49 + ...)/(1 + 2*x^4 + 2*x^16 + 2*x^36 + 2*x^64 + ...).
%t max = 18; A079006[n_] := SeriesCoefficient[ Product[(1+x^(k+1)) / (1+x^k), {k, 1, n, 2}]^2, {x, 0, n}]; A079006[0] = 1; sq = Series[ Sum[ A079006[n]*q^(4n+1), {n, 0, max}], {q, 0, 4max}]; coes = CoefficientList[ InverseSeries[ sq, x], x]; a[n_] := coes[[4n + 2]]; Table[a[n], {n, 0, max-1}] (* _Jean-François Alcover_, Nov 08 2011, after _Michael Somos_ *)
%t a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (EllipticNomeQ[ 16 x] / x)^(1/4), {x, 0, n}]]; (* _Michael Somos_, Jul 13 2013 *)
%t a[ n_] := With[{m = 4 n + 1}, If[ n < 0, 0, SeriesCoefficient[ InverseSeries[ Series[ q (QPochhammer[ q^16] / QPochhammer[-q^4])^2, {q, 0, m}], x], {x, 0, m}]]]; (* _Michael Somos_, Jul 13 2013 *)
%t a[ n_] := With[{m = 4 n + 1}, SeriesCoefficient[ InverseSeries[ Series[ 1/2 EllipticTheta[ 2, 0, x^4] / EllipticTheta[ 3, 0, x^4], {x, 0, m}]], {x, 0, m}]]; (* _Michael Somos_, Apr 14 2015 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, n = 4*n + 1; A = O(x^n); polcoeff( serreverse( x * (eta(x^4 + A) * eta(x^16 + A)^2 / eta(x^8 + A)^3)^2), n))};
%o (PARI) {a(n)=local(A,N=sqrtint(n)+1); A=serreverse(sum(n=1,N,x^((2*n-1)^2))/(1+2*sum(n=1,N,x^(4*n^2)) +O(x^(4*n+4)))); polcoeff(A,4*n+1)} \\ _Paul D. Hanna_, Jan 07 2014
%Y Cf. A001936, A002639, A079006.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_