login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected graphs on n labeled nodes, each node being colored with one of 5 colors, such that no edge joins nodes of the same color.
(Formerly M3911 N1606)
3

%I M3911 N1606 #37 Sep 04 2019 10:23:51

%S 1,5,20,300,9980,616260,65814020,11878194300,3621432947180,

%T 1880516646144660,1678121372919602420,2590609089652498130700,

%U 6947580541943715645962780,32448510765823652400410879460,264301377639329321236008592510820

%N Number of connected graphs on n labeled nodes, each node being colored with one of 5 colors, such that no edge joins nodes of the same color.

%D R. C. Read, personal communication.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Andrew Howroyd, <a href="/A002030/b002030.txt">Table of n, a(n) for n = 0..50</a>

%H R. C. Read, E. M. Wright, <a href="http://dx.doi.org/10.4153/CJM-1970-066-1">Colored graphs: A correction and extension</a>, Canad. J. Math. 22 1970 594-596.

%F E.g.f.: log(B(x)+1) where B(x) = Sum_{n>=0} b(n)x^n/n! and b(n) = Sum_{j=0..n} C(n, j)*2^(j*(n-j)+2)*A000686(j). - _Sean A. Irvine_, May 27 2013

%F a(n) = m_n(5) using the functions defined in A002032. - _Sean A. Irvine_, May 29 2013

%t m = 15;

%t serconv = (CoefficientList[Sum[x^j*2^Binomial[j, 2], {j, 0, m}] + O[x]^m, x]*CoefficientList[(Sum[x^j/(j!*2^Binomial[j, 2]), {j, 0, m}] + O[x]^m)^5, x]) . x^Range[0, m-1];

%t CoefficientList[1 + Log[serconv] + O[x]^m, x]*Range[0, m-1]! (* _Jean-François Alcover_, Sep 04 2019, after _Andrew Howroyd_ *)

%o (PARI) seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^5))))} \\ _Andrew Howroyd_, Dec 03 2018

%Y Column k=5 of A322279.

%Y Cf. A002032.

%K nonn

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, May 27 2013

%E Name clarified and offset corrected by _Andrew Howroyd_, Dec 03 2018