login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

k appears k times; a(n) = floor(sqrt(2n) + 1/2).
(Formerly M0250 N0089)
272

%I M0250 N0089 #293 Jan 05 2025 19:51:32

%S 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,8,

%T 8,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,

%U 11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13

%N k appears k times; a(n) = floor(sqrt(2n) + 1/2).

%C Integer inverse function of the triangular numbers A000217. The function trinv(n) = floor((1+sqrt(1+8n))/2), n >= 0, gives the values 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ..., that is, the same sequence with offset 0. - _N. J. A. Sloane_, Jun 21 2009

%C Array T(k,n) = n+k-1 read by antidiagonals.

%C Eigensequence of the triangle = A001563. - _Gary W. Adamson_, Dec 29 2008

%C Can apparently also be defined via a(n+1)=b(n) for n >= 2 where b(0)=b(1)=1 and b(n) = b(n-b(n-2))+1. Tested to be correct for all n <= 150000. - _José María Grau Ribas_, Jun 10 2011

%C For any n >= 0, a(n+1) is the least integer m such that A000217(m)=m(m+1)/2 is larger than n. This is useful when enumerating representations of n as difference of triangular numbers; see also A234813. - _M. F. Hasler_, Apr 19 2014

%C Number of binary digits of A023758, i.e., a(n) = ceiling(log_2(A023758(n+2))). - _Andres Cicuttin_, Apr 29 2016

%C a(n) and A002260(n) give respectively the x(n) and y(n) coordinates of the sorted sequence of points in the integer lattice such that x(n) > 0, 0 < y(n) <= x(n), and min(x(n), y(n)) < max(x(n+1), y(n+1)) for n > 0. - _Andres Cicuttin_, Dec 25 2016

%C Partial sums (A060432) are given by S(n) = (-a(n)^3 + a(n)*(1+6n))/6. - _Daniel Cieslinski_, Oct 23 2017

%C As an array, T(k,n) is the number of digits columns used in carryless multiplication between a k-digit number and an n-digit number. - _Stefano Spezia_, Sep 24 2022

%C a(n) is the maximum number of possible solutions to an n-statement Knights and Knaves Puzzle, where each statement is of the form "x of us are knights" for some 1 <= x <= n, knights can only tell the truth and knaves can only lie. - Taisha Charles and _Brittany Ohlinger_, Jul 29 2023

%D Edward S. Barbeau, Murray S. Klamkin, and William O. J. Moser, Five Hundred Mathematical Challenges, Prob. 441, pp. 41, 194. MAA 1995.

%D R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 97.

%D K. Hardy and K. S. Williams, The Green Book of Mathematical Problems, p. 59, Solution to Prob. 14, Dover NY, 1985

%D R. Honsberger, Mathematical Morsels, pp. 133-134, MAA 1978.

%D J. F. Hurley, Litton's Problematical Recreations, pp. 152; 313-4 Prob. 22, VNR Co., NY, 1971.

%D D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 43.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

%H Franklin T. Adams-Watters, <a href="/A002024/b002024.txt">Table of n, a(n) for n = 1..5050</a>

%H Jaegug Bae and Sungjin Choi, <a href="https://doi.org/10.4134/JKMS.2003.40.5.757">A generalization of a subset-sum-distinct sequence</a>, J. Korean Math. Soc. 40 (2003), no. 5, 757--768. MR1996839 (2004d:05198). See b(n).

%H Jonathan H. B. Deane and Guido Gentile, <a href="https://arxiv.org/abs/2311.13854">A diluted version of the problem of the existence of the Hofstadter sequence</a>, arXiv:2311.13854 [math.NT], 2023. See p. 10.

%H Nathan Fox, <a href="https://arxiv.org/abs/2203.09340">Connecting Slow Solutions to Nested Recurrences with Linear Recurrent Sequences</a>, arXiv:2203.09340 [math.CO], 2022.

%H H. T. Freitag and H. W. Gould, <a href="http://www.jstor.org/stable/2688796">Solution to Problem 571</a>, Math. Mag., 38 (1965), 185-187.

%H H. T. Freitag (Proposer) and H. W. Gould (Solver), <a href="/A002024/a002024_1.pdf">Problem 571: An Ordering of the Rationals</a>, Math. Mag., 38 (1965), 185-187 [Annotated scanned copy]

%H Mikel Garcia-de-Andoin, Álvaro Saiz, Pedro Pérez-Fernández, Lucas Lamata, Izaskun Oregi, and Mikel Sanz, <a href="https://arxiv.org/abs/2307.00966">Digital-Analog Quantum Computation with Arbitrary Two-Body Hamiltonians</a>, arXiv:2307.00966 [quant-ph], 2023.

%H S. W. Golomb, <a href="/A005185/a005185_1.pdf">Discrete chaos: sequences satisfying "strange" recursions</a>, unpublished manuscript, circa 1990 [cached copy, with permission (annotated)]

%H Henry W. Gould, <a href="/A003099/a003099.pdf">Letters to N. J. A. Sloane, Oct 1973 and Jan 1974</a>.

%H Abraham Isgur, Vitaly Kuznetsov, and Stephen Tanny, <a href="http://arxiv.org/abs/1202.0276">A combinatorial approach for solving certain nested recursions with non-slow solutions</a>, arXiv:1202.0276 [math.CO], 2012.

%H Stanley Wu-Wei Liu, <a href="/A002024/a002024_3.pdf">Closed form expressions for A002024(n)</a>.

%H M. A. Nyblom, <a href="http://www.jstor.org/stable/2695446">Some curious sequences involving floor and ceiling functions</a>, Am. Math. Monthly 109 (#6, 200), 559-564.

%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [Of] Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.

%H Raphael Schumacher, <a href="https://arxiv.org/abs/1605.09204">Extension of Summation Formulas involving Stirling series</a>, arXiv:1605.09204 [math.NT], 2016.

%H Raphael Schumacher, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/55-2/Schumacher12132016.pdf">The self-counting identity</a>, Fib. Quart., 55 (No. 2 2017), 157-167.

%H Raphael Schumacher, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/60-5/schumacher.pdf">The Self-Counting Flow</a>, Fibonacci Quart. 60 (2022), no. 5, 324-343.

%H N. J. A. Sloane, <a href="/A001149/a001149.pdf">Handwritten notes on Self-Generating Sequences, 1970</a>. (note that A1148 has now become A005282)

%H Michael Somos, <a href="/A073189/a073189.txt">Sequences used for indexing triangular or square arrays</a>.

%H L. J. Upton, <a href="/A002024/a002024.pdf">Letter to N. J. A. Sloane, May 22 1991</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Self-CountingSequence.html">Self-Counting Sequence</a>.

%H <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>

%F a(n) = floor(1/2 + sqrt(2n)). Also a(n) = ceiling((sqrt(1+8n)-1)/2). [See the Liu link for a large collection of explicit formulas. - _N. J. A. Sloane_, Oct 30 2019]

%F a((k-1)*k/2 + i) = k for k > 0 and 0 < i <= k. - _Reinhard Zumkeller_, Aug 30 2001

%F a(n) = a(n - a(n-1)) + 1, with a(1)=1. - Ian M. Levitt (ilevitt(AT)duke.poly.edu), Aug 18 2002

%F a(n) = round(sqrt(2n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002

%F T(n,k) = A003602(A118413(n,k)); = T(n,k) = A001511(A118416(n,k)). - _Reinhard Zumkeller_, Apr 27 2006

%F G.f.: (x/(1-x))*Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - _Vladeta Jovovic_, Oct 06 2003

%F Equals A127899 * A004736. - _Gary W. Adamson_, Feb 09 2007

%F Sum_{i=1..n} Sum_{j=i..n+i-1} T(j,i) = A000578(n); Sum_{i=1..n} T(n,i) = A000290(n). - _Reinhard Zumkeller_, Jun 24 2007

%F a(n) + n = A014132(n). - _Vincenzo Librandi_, Jul 08 2010

%F a(n) = ceiling(-1/2 + sqrt(2n)). - _Branko Curgus_, May 12 2009

%F a(A169581(n)) = A038567(n). - _Reinhard Zumkeller_, Dec 02 2009

%F a(n) = round(sqrt(2*n)) = round(sqrt(2*n-1)); there exist a and b greater than zero such that 2*n = 2+(a+b)^2 -(a+3*b) and a(n)=(a+b-1). - Fabio Civolani (civox(AT)tiscali.it), Feb 23 2010

%F A005318(n+1) = 2*A005318(n) - A205744(n), A205744(n) = A005318(A083920(n)), A083920(n) = n - a(n). - _N. J. A. Sloane_, Feb 11 2012

%F Expansion of psi(x) * x / (1 - x) in powers of x where psi() is a Ramanujan theta function. - _Michael Somos_, Mar 19 2014

%F G.f.: (x/(1-x)) * Product_{n>=1} (1 + x^n) * (1 - x^(2*n)). - _Paul D. Hanna_, Feb 27 2016

%F a(n) = 1 + Sum_{i=1..n/2} ceiling(floor(2(n-1)/(i^2+i))/(2n)). - _José de Jesús Camacho Medina_, Jan 07 2017

%F a(n) = floor((sqrt(8*n-7)+1)/2). - _Néstor Jofré_, Apr 24 2017

%F a(n) = floor((A000196(8*n)+1)/2). - _Pontus von Brömssen_, Dec 10 2018

%F Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - _Amiram Eldar_, Oct 01 2022

%F G.f. as array: (x^2*(1 - y)^2 + y^2 + x*y*(1 - 2*y))/((1 - x)^2*(1 - y)^2). - _Stefano Spezia_, Apr 22 2024

%e From _Clark Kimberling_, Sep 16 2008: (Start)

%e As a rectangular array, a northwest corner:

%e 1 2 3 4 5 6

%e 2 3 4 5 6 7

%e 3 4 5 6 7 8

%e 4 5 6 7 8 9

%e This is the weight array (cf. A144112) of A107985 (formatted as a rectangular array). (End)

%e G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^9 + 4*x^9 + 4*x^10 + ...

%p A002024 := n-> ceil((sqrt(1+8*n)-1)/2); seq(A002024(n), n=1..100);

%t a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + 1 (* _Branko Curgus_, May 12 2009 *)

%t Table[n, {n, 13}, {n}] // Flatten (* _Robert G. Wilson v_, May 11 2010 *)

%t Table[PadRight[{},n,n],{n,15}]//Flatten (* _Harvey P. Dale_, Jan 13 2019 *)

%o /* The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 1, 1 <= k <= n) by rows from left to right: n -> T(t1(n), t2(n)).

%o * The PARI functions t1, t3 can be used to read a triangular array T(n,k) (n >= 1, 1 <= k <= n) by rows from right to left: n -> T(t1(n), t3(n)).

%o * The PARI functions t1, t4 can be used to read a triangular array T(n,k) (n >= 1, 0 <= k <= n-1) by rows from left to right: n -> T(t1(n), t4(n)).

%o - _Michael Somos_, Aug 23, 2002 */

%o (PARI) t1(n)=floor(1/2+sqrt(2*n)) /* A002024 = this sequence */

%o (PARI) t2(n)=n-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1) */

%o (PARI) t3(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1 /* A004736 */

%o (PARI) t4(n)=n-1-binomial(floor(1/2+sqrt(2*n)),2) /* A002260(n-1)-1 */

%o (PARI) A002024(n)=(sqrtint(n*8)+1)\2 \\ _M. F. Hasler_, Apr 19 2014

%o (PARI) a(n)=(sqrtint(8*n-7)+1)\2

%o (PARI) a(n)=my(k=1);while(binomial(k+1,2)+1<=n,k++);k \\ _R. J. Cano_, Mar 17 2014

%o (Haskell)

%o a002024 n k = a002024_tabl !! (n-1) !! (k-1)

%o a002024_row n = a002024_tabl !! (n-1)

%o a002024_tabl = iterate (\xs@(x:_) -> map (+ 1) (x : xs)) [1]

%o a002024_list = concat a002024_tabl

%o a002024' = round . sqrt . (* 2) . fromIntegral

%o -- _Reinhard Zumkeller_, Jul 05 2015, Feb 12 2012, Mar 18 2011

%o (Haskell) a002024_list = [1..] >>= \n -> replicate n n

%o (Haskell) a002024 = (!!) $ [1..] >>= \n -> replicate n n

%o -- _Sascha Mücke_, May 10 2016

%o (Magma) [Floor(Sqrt(2*n) + 1/2): n in [1..80]]; // _Vincenzo Librandi_, Nov 19 2014

%o (Sage) [floor(sqrt(2*n) +1/2) for n in (1..80)] # _G. C. Greubel_, Dec 10 2018

%o (Python)

%o from math import isqrt

%o def A002024(n): return (isqrt(8*n)+1)//2 # _Chai Wah Wu_, Feb 02 2022

%Y a(n+1) = 1+A003056(n), A022846(n)=a(n^2), a(n+1)=A002260(n)+A025581(n).

%Y Cf. A001462, A002262, A003881, A004736, A127899, A107985, A001563, A014132, A000194, A005145, A131507, A093995, A060432 (partial sums).

%Y A123578 is an essentially identical sequence.

%K nonn,easy,nice,tabl,changed

%O 1,2

%A _N. J. A. Sloane_