Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4330 N1813 #67 Jun 01 2024 11:44:24
%S 1,1,1,-1,-7,5,145,-5,-6095,-5815,433025,956375,-46676375,-172917875,
%T 7108596625,38579649875,-1454225641375,-10713341611375,
%U 384836032842625,3663118565923375,-127950804666254375,-1519935859717136875
%N a(n) = a(n-1) - (n-1)(n-2)a(n-2).
%D Dwight, Tables of Integrals ..., Eq. 552.5, page 133.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A002019/b002019.txt">Table of n, a(n) for n = 0..100</a>
%H G. Guillotte and L. Carlitz, <a href="http://www.fq.math.ca/Scanned/13-1/advanced13-1.pdf">Problem H-216 and solution</a>, Fib. Quarter. p. 90, Vol 13, 1, Feb. 1975.
%H R. Kelisky, <a href="http://dx.doi.org/10.1215/S0012-7094-59-02654-7">The numbers generated by exp(arctan x)</a>, Duke Math. J., 26 (1959), 569-581.
%H H. P. Robinson and N. J. A. Sloane, <a href="/A002037/a002037.pdf">Correspondence, 1971-1972</a>
%H Kruchinin Vladimir Victorovich, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.
%F E.g.f.: exp(arctan(x)).
%F a(n) = n!*sum(if oddp(m+n) then 0 else (-1)^((3*n+m)/2)/(2^m*m!)*sum(2^i*binomial(n-1,i-1)*m!/i!*stirling1(i,m),i,m,n),m,1,n), n>0. - _Vladimir Kruchinin_, Aug 05 2010
%F E.g.f.: exp(arctan(x)) = 1 + 2x/(H(0)-x); H(k) = 4k + 2 + x^2*(4k^2 + 8k + 5)/H(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 15 2011
%F a(n+1) = a(n) - a(n-1) * A002378(n-2). - _Reinhard Zumkeller_, Feb 27 2012
%F E.g.f.: -2i*(B((1+ix)/2; (2-i)/2, (2+i)/2) - B(1/2; (2-i)/2, (2+i)/2)), for a(0)=0, a(1)=a(2)=a(3)=1, B(x;a,b) is the incomplete Beta function. - _G. C. Greubel_, May 01 2015
%F a(n) = i^n*n!*Sum_{r+s=n} (-1)^s*binomial(-i/2, r)*binomial(i/2,s) where i is the imaginary unit. See the Fib. Quart. link. - _Michel Marcus_, Jan 22 2017
%t RecurrenceTable[{a[0]==1,a[1]==1,a[n]==a[n-1]-(n-1)(n-2)a[n-2]}, a[n],{n,30}] (* _Harvey P. Dale_, May 02 2011 *)
%t CoefficientList[Series[E^(ArcTan[x]),{x,0,20}],x]*Range[0,20]! (* _Vaclav Kotesovec_, Nov 06 2014 *)
%o (Maxima) a(n):=n!*sum(if oddp(m+n) then 0 else (-1)^((3*n+m)/2)/(2^m*m!)*sum(2^i*binomial(n-1,i-1)*m!/i!*stirling1(i,m),i,m,n),m,1,n); /* _Vladimir Kruchinin_, Aug 05 2010 */
%o (Haskell)
%o a002019 n = a002019_list !! n
%o a002019_list = 1 : 1 : zipWith (-)
%o (tail a002019_list) (zipWith (*) a002019_list a002378_list)
%o -- _Reinhard Zumkeller_, Feb 27 2012
%o (Magma) I:=[1,1]; [1] cat [ n le 2 select I[n] else Self(n-1)-(n^2-3*n+2)*Self(n-2): n in [1..35]]; // _Vincenzo Librandi_, May 02 2015
%Y Bisections are A102058 and A102059.
%Y Cf. A006228.
%Y Row sums of signed triangle A049218.
%Y Cf. A000246.
%K sign,nice,easy
%O 0,5
%A _N. J. A. Sloane_
%E More terms from _Herman P. Robinson_