Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #148 Sep 03 2024 01:18:57
%S 1,3,12,48,192,768,3072,12288,49152,196608,786432,3145728,12582912,
%T 50331648,201326592,805306368,3221225472,12884901888,51539607552,
%U 206158430208,824633720832,3298534883328,13194139533312,52776558133248,211106232532992,844424930131968
%N a(n) = 3*4^(n-1), n>0; a(0)=1.
%C Second binomial transform of (1,1,4,4,16,16,...) = (3*2^n+(-2)^n)/4. - _Paul Barry_, Jul 16 2003
%C Number of vertices (or sides) formed after the (n-1)-th iterate towards building a Koch's snowflake. - _Lekraj Beedassy_, Jan 24 2005
%C For n >= 1, a(n) is the number of functions f:{1,2,...,n}->{1,2,3,4} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4} we have f(x) <> y. - Aleksandar M. Janjic and _Milan Janjic_, Mar 27 2007
%C a(n) = (n+1) terms in the sequence (1, 2, 3, 3, 3, ...) dot (n+1) terms in the sequence (1, 1, 3, 12, 48, ...). Example: a(4) = 192 = (1, 2, 3, 3, 3) dot (1, 1, 3, 12, 48) = (1 + 2 + 9 + 36 + 144). - _Gary W. Adamson_, Aug 03 2010
%C a(n) is the number of compositions of n when there are 3 types of each natural number. - _Milan Janjic_, Aug 13 2010
%C See A178789 for the number of acute (= exterior) angles of the Koch snowflake referred to in the above comment by L. Beedassy. - _M. F. Hasler_, Dec 17 2013
%C After 1, subsequence of A033428. - _Vincenzo Librandi_, May 26 2014
%C a(n) counts walks (closed) on the graph G(1-vertex; 1-loop x3, 2-loop x3, 3-loop x3, 4-loop x3, ...). - _David Neil McGrath_, Jan 01 2015
%C For n > 1, a(n) are numbers k such that (2^(k-1) mod k)/(2^k mod k) = 2; 2^(a(n)-1) == 2^(2n-1) (mod a(n)) and 2^a(n) == 2^(2n-2) (mod a(n)). - _Thomas Ordowski_, Apr 22 2020
%C For n > 1, a(n) is the number of 4-colorings of the Hex graph of size 2 X (n-1). More generally, for q > 2, the number of q-colorings of the Hex graph of size 2 X n is given by q*(q - 1)*(q - 2)^(2*n - 2). - _Sela Fried_, Sep 25 2023
%C For n > 1, a(n) is the number of pixels in the HEALPix discretization of the sphere of order n-2; HEALPix is a common sphere pixellization scheme in astronomy, cosmology, and nuclear engineering. - _Jayson R. Vavrek_, Aug 08 2024
%H Vincenzo Librandi, <a href="/A002001/b002001.txt">Table of n, a(n) for n = 0..300</a>
%H Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, <a href="https://arxiv.org/abs/2203.13205">Honeycombs in the Pascal triangle and beyond</a>, arXiv:2203.13205 [math.HO], 2022. See p. 5.
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>.
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=456">Encyclopedia of Combinatorial Structures 456</a>.
%H P. Kernan, <a href="http://theory2.phys.cwru.edu/~pete/java_chaos/KochApplet.html">Koch Snowflake</a>. [Broken link]
%H C. Lanius, <a href="http://math.rice.edu/~lanius/frac/koch/koch.html">The Koch Snowflake</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KochSnowflake.html">Koch Snowflake</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Koch_snowflake">Koch snowflake</a>.
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>.
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4).
%F From _Paul Barry_, Apr 20 2003: (Start)
%F a(n) = (3*4^n + 0^n)/4 (with 0^0=1).
%F E.g.f.: (3*exp(4*x) + 1)/4. (End)
%F With interpolated zeros, this has e.g.f. (3*cosh(2*x) + 1)/4 and binomial transform A006342. - _Paul Barry_, Sep 03 2003
%F a(n) = Sum_{j=0..1} Sum_{k=0..n} C(2n+j, 2k). - _Paul Barry_, Nov 29 2003
%F G.f.: (1-x)/(1-4*x). The sequence 1, 3, -12, 48, -192, ... has g.f. (1+7*x)/(1+4*x). - _Paul Barry_, Feb 12 2004
%F a(n) = 3*Sum_{k=0..n-1} a(k). - _Adi Dani_, Jun 24 2011
%F G.f.: 1/(1-3*Sum_{k>=1} x^k). - _Joerg Arndt_, Jun 24 2011
%F Row sums of triangle A134316. - _Gary W. Adamson_, Oct 19 2007
%F a(n) = A011782(n) * A003945(n). - _R. J. Mathar_, Jul 08 2009
%F If p(1)=3 and p(i)=3 for i > 1, and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1) when i <= j, A(i,j)=-1 when i=j+1, and A(i,j) = 0 otherwise, then, for n >= 1, a(n) = det A. - _Milan Janjic_, Apr 29 2010
%F a(n) = 4*a(n-1), a(0)=1, a(1)=3. - _Vincenzo Librandi_, Dec 31 2010
%F G.f.: 1 - G(0) where G(k) = 1 - 1/(1-3*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 25 2013
%F G.f.: x+2*x/(G(0)-2), where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 26 2013
%F a(n) = ceiling(3*4^(n-1)). - _Wesley Ivan Hurt_, Dec 17 2013
%F Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(3,3,3,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then T(n,j) counts n-walks containing j loops on the single vertex graph above and a(n) = Sum_{j=1..n} T(n,j). (S(n)^*0=I.) - _David Neil McGrath_, Jan 01 2015
%p A002001:=n->ceil(3*4^(n-1)); seq(A002001(n), n=0..30); # _Wesley Ivan Hurt_, Dec 17 2013
%t Table[Ceiling[3*4^(n - 1)], {n, 0, 30}] (* _Wesley Ivan Hurt_, May 26 2014 *)
%o (Magma) [ (3*4^n+0^n)/4: n in [0..22] ]; // _Klaus Brockhaus_, Aug 15 2009
%o (PARI) v=vector(100,n,3*4^(n-2));v[1]=1;v \\ _Charles R Greathouse IV_, May 19 2011
%o (PARI) A002001=n->if(n,3*4^(n-1),1) \\ _M. F. Hasler_, Dec 17 2013
%Y First difference of 4^n (A000302).
%Y Cf. A003945, A006342, A011782, A033428, A134316, A178789.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Dec 11 1996