Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3756 N1535 #28 Nov 19 2022 04:39:02
%S 1,1,5,7,7,7,9,53,73,83,83,83,157,185,185,185,185,1927,2295,2273,5313,
%T 5313,7173,9529,18545,18545,18545,18545,22635,22635,66011,121725,
%U 344909,344909
%N Class numbers associated with terms of A001988.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H D. H. Lehmer, E. Lehmer and D. Shanks, <a href="https://doi.org/10.1090/S0025-5718-1970-0271006-X">Integer sequences having prescribed quadratic character</a>, Math. Comp., 24 (1970), 433-451.
%H D. H. Lehmer, E. Lehmer and D. Shanks, <a href="/A002189/a002189.pdf">Integer sequences having prescribed quadratic character</a>, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]
%o (PARI) isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-1, q), return (0)); ); return (1); }
%o a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if (((p%8) == 7) && isok(p, oddpn), return (qfbclassno(-p*if(p%4>1, 4, 1)))););} \\ _Michel Marcus_, Oct 19 2017
%Y Cf. A001988.
%K nonn
%O 1,3
%A _N. J. A. Sloane_
%E Better name from _Sean A. Irvine_, Mar 06 2013
%E Terms corrected by _Sean A. Irvine_, Mar 06 2013
%E Offset changed by _Michel Marcus_, Oct 19 2017