Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3389 N1369 #36 Jun 25 2023 02:52:17
%S 1,1,4,10,24,49,94,169,289,468,734,1117,1656,2385,3370,4672,6375,8550,
%T 11322,14800,19138,24460,30982,38882,48417,59779,73316,89291,108108,
%U 130053,155646,185258,219489,258735,303748,355034,413442,479500,554256
%N Number of partitions of floor(7n/2) into n nonnegative integers each no more than 7.
%C Also, the dimension of the vector space of homogeneous covariants of degree n for the binary form of degree 7. To calculate the dimension one uses the Sylvester-Cayley formula. - _Leonid Bedratyuk_, Dec 06 2006
%C In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(7n/2) involving the letters a, b, c, d, e, f, g, h, having weights 0, 1, 2, 3, 4, 5, 6, 7 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%D A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D Springer, T. A., Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, (1977).
%D Hilbert, D., Theory of algebraic invariants. Lectures. Cambridge University Press, (1993).
%H Alois P. Heinz, <a href="/A001979/b001979.txt">Table of n, a(n) for n = 0..1000</a>
%H A. Cayley, <a href="http://quod.lib.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;q1=second%20memoir%20on%20quantics;rgn=full%20text;cite1=cayley;cite1restrict=author;idno=ABS3153.0002.001;didno=ABS3153.0002.001;view=pdf;seq=00000289">Numerical tables supplementary to second memoir on quantics</a>, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
%H A. Cayley, <a href="/A001971/a001971.pdf">Numerical tables supplementary to second memoir on quantics</a>, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
%H Shalosh B. Ekhad, Doron Zeilberger, <a href="https://arxiv.org/abs/1901.08172">In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?</a>, arXiv:1901.08172 [math.CO], 2019.
%H <a href="/index/Rec#order_42">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 0, 1, -2, 2, -2, 2, -2, 1, 0, 0, 0, -2, 4, -4, 4, -3, 2, -1, 0, 1, -2, 3, -4, 4, -4, 2, 0, 0, 0, -1, 2, -2, 2, -2, 2, -1, 0, 1, -2, 1).
%F Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)), where w=floor(7n/2). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%F G.f.: -(x^34 -x^33 +3*x^32 +3*x^31 +7*x^30 +12*x^29 +16*x^28 +28*x^27 +33*x^26 +46*x^25 +56*x^24 +73*x^23 +83*x^22 +90*x^21 +106*x^20 +109*x^19 +121*x^18 +110*x^17 +121*x^16 +109*x^15 +106*x^14 +90*x^13 +83*x^12 +73*x^11 +56*x^10 +46*x^9 +33*x^8 +28*x^7 +16*x^6 +12*x^5 +7*x^4 +3*x^3 +3*x^2 -x+1) / ((x^4-x^2+1) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) *(x^4+1) *(x^2+x+1)^2 *(x^2-x+1)^2 *(x^2+1)^3 *(x+1)^5 *(x-1)^7). - _Alois P. Heinz_, Jul 25 2015
%p a(n+1) = subs({x=1},convert(series((product('1-x^i','i'=8..7+n)/product('1-x^k','k'=2..n)),x,trunc(7*n/2)+1),polynom)); # _Leonid Bedratyuk_, Dec 06 2006
%o (PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=450; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(d=0,60,w=floor(7*d/2);print1(polcoeff(polcoeff(p,w),d)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
%Y Cf. A001980.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_
%E Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008