Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3335 N1342 #43 Feb 04 2022 08:15:09
%S 1,1,4,8,18,32,58,94,151,227,338,480,676,920,1242,1636,2137,2739,3486,
%T 4370,5444,6698,8196,9926,11963,14293,17002,20076,23612,27594,32134,
%U 37212,42955,49341,56512,64444,73294,83036,93844,105690,118765,133037
%N Number of partitions of 3n into n parts from the set {0, 1, ..., 6} (repetitions admissible).
%C In Cayley's terminology, this is the number of literal terms of degree n and weight 3*n involving the letters a, b, c, d, e, f, g, having weights 0, 1, 2, 3, 4, 5, 6 respectively, a number which is also equal to the coefficient of x^(3n)z^n in the development of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 16 2008
%C a(0..5)=0; a(n) is the number of partitions of 3*(n+1) with 6 different numbers from the set {1,...,n}; the number of partitions of 3*(n+1)-C and 3*(n+1)+C are equal; example: n=8; 3*n+3=27; a(8)=4; (21,1), (22,1),(23,2), (24,2), (25,3), (26,3), (27,4), (28,3), (29,3), (30,2), (31,2),(32,1), (33,1). - _Paul Weisenhorn_, Jun 01 2009
%D A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
%D M. Jeger, Einfuehrung in die Kombinatorik, Band 2, Klett, 1975, pages 110- [From _Paul Weisenhorn_, Jun 01 2009]
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A001977/b001977.txt">Table of n, a(n) for n = 0..1000</a>
%H A. Cayley, <a href="http://quod.lib.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;q1=second%20memoir%20on%20quantics;rgn=full%20text;cite1=cayley;cite1restrict=author;idno=ABS3153.0002.001;didno=ABS3153.0002.001;view=pdf;seq=00000289">Numerical tables supplementary to second memoir on quantics</a>, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
%H A. Cayley, <a href="/A001971/a001971.pdf">Numerical tables supplementary to second memoir on quantics</a>, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
%H Shalosh B. Ekhad and Doron Zeilberger, <a href="https://arxiv.org/abs/1901.08172">In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?</a>, arXiv:1901.08172 [math.CO], 2019.
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-1,-1,-1,0,2,2,0,-1,-1,-1,-1,2,1,-1).
%F a(n) is the coefficient of x^(3*n+3) from the g.f. Product_{s=1..6} (x^s-x^(n+1))/(1-x^s). - _Paul Weisenhorn_, Jun 01 2009
%F G.f.: (x^10+x^8+3*x^7+4*x^6+4*x^5+4*x^4+3*x^3+x^2+1) / ((x^2+x+1) *(x^4+x^3+x^2+x+1) *(x^2+1) *(x+1)^3 *(x-1)^6). - _Alois P. Heinz_, Jul 26 2015
%t LinearRecurrence[{1, 2, -1, -1, -1, -1, 0, 2, 2, 0, -1, -1, -1, -1, 2, 1, -1}, {1, 1, 4, 8, 18, 32, 58, 94, 151, 227, 338, 480, 676, 920, 1242, 1636, 2137}, 100] (* _Jean-François Alcover_, Feb 25 2020 *)
%o (PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)); n=200; p=subst(subst(f,x,x+x*O(x^n)),z,z+z*O(z^n)); for(n=0,60,print1(polcoeff(polcoeff(p,3*n),n)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 16 2008
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_
%E Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 16 2008