login
Winning positions in the u-pile of the 4-Wythoff game with i=1.
(Formerly M0943 N0354)
5

%I M0943 N0354 #31 Feb 04 2022 00:43:29

%S 0,1,2,4,5,6,7,8,10,11,12,13,15,16,17,18,20,21,22,23,25,26,27,28,29,

%T 31,32,33,34,36,37,38,39,41,42,43,44,46,47,48,49,50,52,53,54,55,57,58,

%U 59,60,62,63,64,65,67,68,69,70,72,73,74,75,76,78,79,80,81,83

%N Winning positions in the u-pile of the 4-Wythoff game with i=1.

%C See Connell (1959) for further information.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001963/b001963.txt">Table of n, a(n) for n = 0..10000</a>

%H Ian G. Connell, <a href="http://dx.doi.org/10.4153/CMB-1959-024-3">A generalization of Wythoff's game</a>, Canad. Math. Bull. 2 (1959) 181-190

%F a(n) = floor( (n+1/4)*(sqrt(5)-1) ). - _R. J. Mathar_, Feb 14 2011

%t Table[Floor[(n + 1/4)*(Sqrt[5] - 1)], {n, 0, 100}] (* _T. D. Noe_, Aug 17 2012 *)

%Y Cf. A001954, A001958, A001959, A001964-A001968.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E Edited by _Hugo Pfoertner_, Dec 27 2021