login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

u-pile numbers for the 3-Wythoff game with i=2.
(Formerly M0541)
3

%I M0541 #21 Feb 04 2022 00:43:53

%S 0,2,3,4,6,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,26,28,29,30,32,

%T 33,34,36,37,38,39,41,42,43,45,46,47,49,50,51,52,54,55,56,58,59,60,62,

%U 63,64,66,67,68,69,71,72,73,75,76,77,79,80,81,82,84,85,86,88

%N u-pile numbers for the 3-Wythoff game with i=2.

%C See Connell (1959) for further information.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001959/b001959.txt">Table of n, a(n) for n = 0..10000</a>

%H Ian G. Connell, <a href="http://dx.doi.org/10.4153/CMB-1959-024-3">A generalization of Wythoff's game</a>, Canad. Math. Bull. 2 (1959) 181-190

%F a(n) = floor( (n+2/3)*(sqrt(13)-1)/2 ). - _R. J. Mathar_, Feb 14 2011

%t Table[Floor[(n + 2/3)*(Sqrt[13] - 1)/2], {n, 0, 100}] (* _T. D. Noe_, Aug 17 2012 *)

%Y Cf. A001954, A001958, A001960, A001963-A001968.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _Hugo Pfoertner_, Dec 27 2021