login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Quadruple factorial numbers: a(n) = (2n)!/n!.
(Formerly M2040 N0808)
141

%I M2040 N0808 #272 Sep 13 2024 11:58:04

%S 1,2,12,120,1680,30240,665280,17297280,518918400,17643225600,

%T 670442572800,28158588057600,1295295050649600,64764752532480000,

%U 3497296636753920000,202843204931727360000,12576278705767096320000,830034394580628357120000,58102407620643984998400000

%N Quadruple factorial numbers: a(n) = (2n)!/n!.

%C Counts binary rooted trees (with out-degree <= 2), embedded in plane, with n labeled end nodes of degree 1. Unlabeled version gives Catalan numbers A000108.

%C Define a "downgrade" to be the permutation which places the items of a permutation in descending order. We are concerned with permutations that are identical to their downgrades. Only permutations of order 4n and 4n+1 can have this property; the number of permutations of length 4n having this property are equinumerous with those of length 4n+1. If a permutation p has this property then the reversal of this permutation also has it. a(n) = number of permutations of length 4n and 4n+1 that are identical to their downgrades. - Eugene McDonnell (eemcd(AT)mac.com), Oct 26 2003

%C Number of broadcast schemes in the complete graph on n+1 vertices, K_{n+1}. - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008

%C Hankel transform is A137565. - _Paul Barry_, Nov 25 2009

%C The e.g.f. of 1/a(n) = n!/(2*n)! is (exp(sqrt(x)) + exp(-sqrt(x)) )/2. - _Wolfdieter Lang_, Jan 09 2012

%C From _Tom Copeland_, Nov 15 2014: (Start)

%C Aerated with intervening zeros (1,0,2,0,12,0,120,...) = a(n) (cf. A123023 and A001147), the e.g.f. is e^(t^2), so this is the base for the Appell sequence with e.g.f. e^(t^2) e^(x*t) = exp(P(.,x),t) (reverse A059344, cf. A099174, A066325 also). P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for e^(-t^2)e^(x*t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), e.g., (P(.,t))^n = P(n,t).

%C Equals A000407*2 with leading 1 added. (End)

%C a(n) is also the number of square roots of any permutation in S_{4*n} whose disjoint cycle decomposition consists of 2*n transpositions. - _Luis Manuel Rivera Martínez_, Mar 04 2015

%C Self-convolution gives A076729. - _Vladimir Reshetnikov_, Oct 11 2016

%C For n > 1, it follows from the formula dated Aug 07 2013 that a(n) is a Zumkeller number (A083207). - _Ivan N. Ianakiev_, Feb 28 2017

%C For n divisible by 4, a(n/4) is the number of ways to place n points on an n X n grid with pairwise distinct abscissae, pairwise distinct ordinates, and 90-degree rotational symmetry. For n == 1 (mod 4), the number of ways is a((n-1)/4) because the center point can be considered "fixed". For 180-degree rotational symmetry see A006882, for mirror symmetry see A000085, A135401, and A297708. - _Manfred Scheucher_, Dec 29 2017

%D D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.

%D L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.

%D Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)

%D R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A001813/b001813.txt">Table of n, a(n) for n = 0..100</a>

%H Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, and Rosa Maria Pidatella, <a href="https://doi.org/10.13140/RG.2.2.25384.83201">Hermite and Laguerre Functions: a Unifying Point of View</a>, Università degli Studi di Catania, Sicily, Italy (2019).

%H Murray Bremner and Martin Markl, <a href="https://arxiv.org/abs/1809.08191">Distributive laws between the Three Graces</a>, arXiv:1809.08191 [math.AT], 2018.

%H R. B. Brent, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Brent/brent5.html">Generalizing Tuenter's Binomial Sums</a>, J. Int. Seq. 18 (2015) # 15.3.2.

%H Peter J. Cameron, <a href="https://doi.org/10.1093/qmath/38.2.155">Some treelike objects</a>, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155. - _N. J. A. Sloane_, Apr 18 2014

%H Peter J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

%H Elliot J. Carr and Matthew J. Simpson, <a href="https://arxiv.org/abs/1810.08890">New homogenization approaches for stochastic transport through heterogeneous media</a>, arXiv:1810.08890 [physics.bio-ph], 2018.

%H W. Y. C. Chen, L. W. Shapiro and L. L. M. Young, <a href="https://arxiv.org/abs/math/0503300">Parity reversing involutions on plane trees and 2-Motzkin paths</a>, arXiv:math/0503300 [math.CO], 2005.

%H Ali Chouria, Vlad-Florin Drǎgoi, and Jean-Gabriel Luque, <a href="https://arxiv.org/abs/2004.04203">On recursively defined combinatorial classes and labelled trees</a>, arXiv:2004.04203 [math.CO], 2020.

%H P. Cvitanovic, <a href="http://www.nbi.dk/~predrag/papers/PRD14-76.pdf">Group theory for Feynman diagrams in non-Abelian gauge theories</a>, Phys. Rev. D14 (1976), 1536-1553.

%H Nick Early, <a href="https://arxiv.org/abs/1810.03246">Honeycomb tessellations and canonical bases for permutohedral blades</a>, arXiv:1810.03246 [math.CO], 2018.

%H John Engbers, David Galvin, and Clifford Smyth, <a href="https://arxiv.org/abs/1610.05803">Restricted Stirling and Lah numbers and their inverses</a>, arXiv:1610.05803 [math.CO], 2016. See p. 8.

%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 127

%H S. Goodenough and C. Lavault, <a href="http://arxiv.org/abs/1404.1894">On subsets of Riordan subgroups and Heisenberg--Weyl algebra</a>, arXiv preprint arXiv:1404.1894 [cs.DM], 2014.

%H S. Goodenough and C. Lavault, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p16/0">Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups</a>, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16,

%H H. W. Gould, <a href="/A007680/a007680.pdf">A class of binomial sums and a series transform</a>, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)

%H A. M. Ibrahim, <a href="http://www.nntdm.net/papers/nntdm-19/NNTDM-19-2-30_42.pdf">Extension of factorial concept to negative numbers</a>, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=115">Encyclopedia of Combinatorial Structures 115</a>

%H L. C. Larson, <a href="/A000900/a000900_1.pdf">The number of essentially different nonattacking rook arrangements</a>, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]

%H Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, <a href="http://ajc.maths.uq.edu.au/pdf/52/ajc_v52_p041.pdf">On the number of mth roots of permutations</a>, Australas. J. Combin. 52 (2012), 41-54 (Theorem 1).

%H Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, <a href="http://arxiv.org/abs/1005.1531">On the number of mth roots of permutations</a>, arXiv:1005.1531 [math.CO], 2010-2011.

%H Édouard Lucas, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k29021h">Théorie des Nombres</a>, Gauthier-Villars, Paris, 1891, Vol. 1, p. 221.

%H R. J. Marsh and P. P. Martin, <a href="https://arxiv.org/abs/math/0612572">Pascal arrays: counting Catalan sets</a>, arXiv:math/0612572 [math.CO], 2006.

%H Calin D. Morosan, <a href="http://dx.doi.org/10.1016/j.ipl.2006.06.007">On the number of broadcast schemes in networks</a>, Information Processing Letters, Volume 100, Issue 5 (2006), 188-193.

%H R. A. Proctor, <a href="https://arxiv.org/abs/math/0606404">Let's Expand Rota's Twelvefold Way for Counting Partitions!</a>, arXiv:math/0606404 [math.CO], 2006-2007.

%H C. Radoux, <a href="http://www.mat.univie.ac.at/~slc/opapers/s28radoux.html">Déterminants de Hankel et théorème de Sylvester</a>, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.

%H J. Riordan, <a href="/A001813/a001813.pdf">Letter to N. J. A. Sloane, Feb 03 1975</a> (with notes by njas)

%H H. E. Salzer, <a href="http://dx.doi.org/10.1090/S0025-5718-1948-0026413-5">Coefficients for expressing the first thirty powers in terms of the Hermite polynomials</a>, Math. Comp., 3 (1948), 167-169.

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F E.g.f.: (1-4*x)^(-1/2).

%F a(n) = (2*n)!/n! = Product_{k=0..n-1} (4*k + 2).

%F Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n) = int(x^n*exp(-x/4)/(sqrt(x)*2*sqrt(Pi)), x=0..infinity), n=0, 1, .. . This representation is unique. - _Karol A. Penson_, Sep 18 2001

%F Define a'(1)=1, a'(n) = Sum_{k=1..n-1} a'(n-k)*a'(k)*C(n, k); then a(n)=a'(n+1). - _Benoit Cloitre_, Apr 27 2003

%F With interpolated zeros (1, 0, 2, 0, 12, ...) this has e.g.f. exp(x^2). - _Paul Barry_, May 09 2003

%F a(n) = A000680(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (4*i + 2) = 4^n*Pochhammer(1/2, n) = 4^n*GAMMA(n+1/2)/sqrt(Pi). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

%F For asymptotics, see the Robinson paper.

%F a(k) = (2*k)!/k! = Sum_{i=1..k+1} |A008275(i,k+1)| * k^(i-1). - _André F. Labossière_, Jun 21 2007

%F a(n) = 12*A051618(a) n >= 2. - _Zerinvary Lajos_, Feb 15 2008

%F a(n) = A000984(n)*A000142(n). - _Zerinvary Lajos_, Mar 25 2008

%F a(n) = A016825(n-1)*a(n-1). - _Roger L. Bagula_, Sep 17 2008

%F a(n) = (-1)^n*A097388(n). - D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008

%F From _Paul Barry_, Jan 15 2009: (Start)

%F G.f.: 1/(1-2x/(1-4x/(1-6x/(1-8x/(1-10x/(1-... (continued fraction);

%F a(n) = (n+1)!*A000108(n). (End)

%F a(n) = Sum_{k=0..n} A132393(n,k)*2^(2n-k). - _Philippe Deléham_, Feb 10 2009

%F G.f.: 1/(1-2x-8x^2/(1-10x-48x^2/(1-18x-120x^2/(1-26x-224x^2/(1-34x-360x^2/(1-42x-528x^2/(1-... (continued fraction). - _Paul Barry_, Nov 25 2009

%F a(n) = A173333(2*n,n) for n>0; cf. A006963, A001761. - _Reinhard Zumkeller_, Feb 19 2010

%F From _Gary W. Adamson_, Jul 19 2011: (Start)

%F a(n) = upper left term of M^n, M = an infinite square production matrix as follows:

%F 2, 2, 0, 0, 0, 0, ...

%F 4, 4, 4, 0, 0, 0, ...

%F 6, 6, 6, 6, 0, 0, ...

%F 8, 8, 8, 8, 8, 0, ...

%F ...

%F (End)

%F a(n) = (-2)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - _Mircea Merca_, May 03 2012

%F G.f.: 1/Q(0), where Q(k) = 1 + x*(4*k+2) - x*(4*k+4)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 18 2013

%F G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 8*x*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 30 2013

%F G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 01 2013

%F D-finite with recurrence: a(n) = (4*n-6)*a(n-2) + (4*n-3)*a(n-1), n>=2. - _Ivan N. Ianakiev_, Aug 07 2013

%F Sum_{n>=0} 1/a(n) = (exp(1/4)*sqrt(Pi)*erf(1/2) + 2)/2 = 1 + A214869, where erf(x) is the error function. - _Ilya Gutkovskiy_, Nov 10 2016

%F Sum_{n>=0} (-1)^n/a(n) = 1 - sqrt(Pi)*erfi(1/2)/(2*exp(1/4)), where erfi(x) is the imaginary error function. - _Amiram Eldar_, Feb 20 2021

%F a(n) = 1/([x^n] hypergeom([1], [1/2], x/4)). - _Peter Luschny_, Sep 13 2024

%e The following permutations of order 8 and their reversals have this property:

%e 1 7 3 5 2 4 0 6

%e 1 7 4 2 5 3 0 6

%e 2 3 7 6 1 0 4 5

%e 2 4 7 1 6 0 3 5

%e 3 2 6 7 0 1 5 4

%e 3 5 1 7 0 6 2 4

%p A001813 := n->(2*n)!/n!;

%p A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):

%p seq(A001813(n), n=0..16); # _Peter Luschny_, Jun 23 2011

%t Table[(2n)!/n!, {n,0,20}] (* _Harvey P. Dale_, May 02 2011 *)

%o (Sage) [binomial(2*n,n)*factorial(n) for n in range(0, 17)] # _Zerinvary Lajos_, Dec 03 2009

%o (PARI) a(n)=binomial(n+n,n)*n! \\ _Charles R Greathouse IV_, Jun 15 2011

%o (PARI) first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ _Iain Fox_, Jan 01 2018 (corrected by _Iain Fox_, Jan 11 2018)

%o (Maxima) makelist(binomial(n+n, n)*n!,n,0,30); /* _Martin Ettl_, Nov 05 2012 */

%o (Magma) [Factorial(2*n)/Factorial(n): n in [0..20]]; // _Vincenzo Librandi_, Oct 09 2018

%o (GAP) List([0..20],n->Factorial(2*n)/Factorial(n)); # _Muniru A Asiru_, Nov 01 2018

%o (Python)

%o from math import factorial

%o def A001813(n): return factorial(n<<1)//factorial(n) # _Chai Wah Wu_, Feb 14 2023

%Y Cf. A037224, A048854, A001147, A007696, A008545, A122670 (essentially the same sequence), A000165, A047055, A047657, A084947, A084948, A084949, A010050, A000142, A008275, A000108, A000984, A008276, A000680, A094216.

%Y Catalan(n-1)*M^(n-1)*n! for M=1,2,3,4,5,6: A001813, A052714 (or A144828), A221954, A052734, A221953, A221955.

%Y Cf. A123023, A059344, A099174, A066325, A001700, A000407, A006882.

%Y Cf. A000085, A135401, A297708. - _Manfred Scheucher_, Jan 07 2018

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, May 01 2000