Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4741 N2029 #44 Mar 27 2024 21:00:20
%S 1,1,10,180,4620,152880,6168960,293025600,15990004800,984647664000,
%T 67493121696000,5094263446272000,419688934689024000,
%U 37465564582397952000,3601861863990534144000,370962724717928318976000,40744403224500159055872000
%N Number of labeled n-vertex dissections of a ball.
%C This is the number of labeled Apollonian networks (planar 3-trees). - _Allan Bickle_, Feb 20 2024
%D L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, 191 (1971), 87-98.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A001762/b001762.txt">Table of n, a(n) for n = 3..100</a>
%H L. W. Beineke and R. E. Pippert, <a href="https://doi.org/10.1007/BF02330563">The Number of Labeled Dissections of a k-Ball</a>, Math. Annalen, 191 (1971), 87-98.
%H Allan Bickle, <a href="https://doi.org/10.20429/tag.2024.000105">A Survey of Maximal k-degenerate Graphs and k-Trees</a>, Theory and Applications of Graphs 0 1 (2024) Article 5.
%F a(n) = binomial(n,3)*(3*n-9)!/(2*n-4)!, n >= 4; a(3) = 1.
%F a(n) ~ 3^(3*n - 19/2) * n^(n-2) / (2^(2*n - 5/2) * exp(n)). - _Vaclav Kotesovec_, Mar 14 2024
%e There is one maximal planar graph with 4 vertices, and one way to label it, so a(4) = 1.
%t Join[{1}, Table[Binomial[n, 3]*(3*n - 9)!/(2*n - 4)!, {n, 4, 25}]] (* _T. D. Noe_, Aug 10 2012 *)
%o (Python)
%o from math import factorial
%o from sympy import binomial
%o def a(n):
%o if n < 4:
%o return 1
%o else:
%o return binomial(n, 3) * factorial(3*n-9) // factorial(2*n-4)
%o print([a(n) for n in range(3, 21)]) # _Paul Muljadi_, Mar 05 2024
%o (Julia)
%o using Combinatorics
%o a(n) = n < 4 ? 1 : binomial(BigInt(n),3)*factorial(BigInt(3*n-9))÷factorial(BigInt(2*n-4))
%o print([a(n) for n in 3:28]) # _Paul Muljadi_, Mar 27 2024
%Y Cf. A000407, A001763, A001764, A027610.
%K nonn
%O 3,3
%A _N. J. A. Sloane_
%E More terms from _Wolfdieter Lang_
%E Name clarified by _Andrey Zabolotskiy_, Mar 15 2024