login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-2) + a(n-5).
(Formerly M0147 N0059)
11

%I M0147 N0059 #63 Apr 13 2022 13:25:16

%S 0,1,0,1,0,1,1,1,2,1,3,2,4,4,5,7,7,11,11,16,18,23,29,34,45,52,68,81,

%T 102,126,154,194,235,296,361,450,555,685,851,1046,1301,1601,1986,2452,

%U 3032,3753,4633,5739,7085,8771,10838,13404,16577,20489,25348,31327

%N a(n) = a(n-2) + a(n-5).

%C a(n+1) is the number of compositions of n into parts 2 and 5. [_Joerg Arndt_, Mar 15 2013]

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001687/b001687.txt">Table of n, a(n) for n = 0..1000</a>

%H Dorota Bród, <a href="https://doi.org/10.1007/s40590-021-00369-5">On trees with unique locating kernels</a>, Boletín de la Sociedad Matemática Mexicana (2021) Vol. 27, Art. No. 61.

%H T. M. Green, <a href="http://www.jstor.org/stable/2687953">Recurrent sequences and Pascal's triangle</a>, Math. Mag., 41 (1968), 13-21.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=405">Encyclopedia of Combinatorial Structures 405</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H E. Wilson, <a href="http://www.anaphoria.com/meruone.PDF">The Scales of Mt. Meru</a>

%H R. Yanco, <a href="/A007380/a007380.pdf">Letter and Email to N. J. A. Sloane, 1994</a>

%H R. Yanco and A. Bagchi, <a href="/A007380/a007380_1.pdf">K-th order maximal independent sets in path and cycle graphs</a>, Unpublished manuscript, 1994. (Annotated scanned copy)

%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 1).

%F G.f.: x/(1-x^2-x^5).

%F G.f. A(x) satisfies 1+x^4*A(x) = 1/(1-x^5-x^7-x^9-....). - _Jon Perry_, Jul 04 2004

%F G.f.: -x/( x^5 - 1 + 5*x^2/Q(0) ) where Q(k) = x + 5 + k*(x+1) - x*(k+1)*(k+6)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Mar 15 2013

%p A001687:=-z/(-1+z**2+z**5); # _Simon Plouffe_ in his 1992 dissertation

%t CoefficientList[Series[x/(1-x^2-x^5),{x,0,60}],x] (* or *) Nest[ Append[#,#[[-5]]+#[[-2]]]&, {0,1,0,1,0}, 60] (* _Harvey P. Dale_, Apr 06 2011 *)

%t LinearRecurrence[{0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}, 100] (* _T. D. Noe_, Aug 09 2012 *)

%o (PARI) a(n)=if(n<0,polcoeff(x^4/(1+x^3-x^5)+x^-n*O(x),-n),polcoeff(x/(1-x^2-x^5)+x^n*O(x),n)) /* _Michael Somos_, Jul 15 2004 */

%o (Maxima)

%o a(n):=sum(if mod(n-5*k,3)=0 then binomial(k,(5*k-n)/3) else 0,k,1,n); /* _Vladimir Kruchinin_, May 24 2011 */

%Y Cf. A005686.

%K nonn

%O 0,9

%A _N. J. A. Sloane_, following a suggestion from _Robert G. Wilson v_