login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with initial conditions a(0..3) = (0, 0, 1, 0).
(Formerly M1081 N0410)
41

%I M1081 N0410 #119 Jan 05 2025 19:51:32

%S 0,0,1,0,1,2,4,7,14,27,52,100,193,372,717,1382,2664,5135,9898,19079,

%T 36776,70888,136641,263384,507689,978602,1886316,3635991,7008598,

%U 13509507,26040412,50194508,96753025,186497452,359485397,692930382,1335666256,2574579487

%N Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4), with initial conditions a(0..3) = (0, 0, 1, 0).

%C The "standard" tetranacci numbers with initial terms (0,0,0,1) are listed in A000078.

%C Starting (1, 2, 4, ...) is the INVERT transform of the cyclic sequence (1, 1, 1, 0, (repeat) ...); equivalent to the statement that (1, 2, 4, ...) corresponding to n = (1, 2, 3, ...) represents the numbers of ordered compositions of n using terms in the set "not multiples of four". - _Gary W. Adamson_, May 13 2013

%C a(n+4) equals the number of n-length binary words avoiding runs of zeros of lengths 4i+3, (i=0,1,2,...). - _Milan Janjic_, Feb 26 2015

%C a(n) is the number of ways to tile a skew double-strip of n-2 cells using squares and all possible "dominos", as seen in the comments in A000078, but with the added provision that the first tile (in the lower left corner) must be a domino. For reference, here is the skew double-strip corresponding to n=14, with 12 cells:

%C ___ ___ ___ ___ ___ ___

%C | | | | | | |

%C _|___|___|___|___|_ _|___|

%C | | | | | | |

%C |___|___|___|___|___|___|,

%C and here are the three possible "domino" tiles:

%C ___ ___

%C | | | |

%C _| _| |_ |_ _______

%C | | | | | |

%C |___|, |___|, |_______|. - _Greg Dresden_ and Ruotong Li, Jun 05 2024

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Harvey P. Dale, <a href="/A001631/b001631.txt">Table of n, a(n) for n = 0..1000</a>

%H Matthias Beck and Neville Robbins, <a href="http://arxiv.org/abs/1403.0665">Variations on a Generating Function Theme: Enumerating Compositions with Parts Avoiding an Arithmetic Sequence</a>, arXiv:1403.0665 [math.NT], 2014.

%H Petros Hadjicostas, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Hadjicostas/hadji2.html">Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence</a>, Journal of Integer Sequences, 19 (2016), #16.8.2.

%H W. C. Lynch, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/8-1/lynch.pdf">The t-Fibonacci numbers and polyphase sorting</a>, Fib. Quart., 8 (1970), pp. 6-22.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1).

%F G.f.: ((x-1)*x^2)/(x^4+x^3+x^2+x-1). - _Harvey P. Dale_, Oct 21 2011

%p A001631:=(-1+z)/(-1+z+z**2+z**3+z**4); # conjectured by _Simon Plouffe_ in his 1992 dissertation

%p a:= n-> (Matrix([[0,-1,2,-1]]). Matrix(4, (i,j)-> `if`(i=j-1 or j=1, 1, 0))^n)[1,1]: seq(a(n), n=0..35); # _Alois P. Heinz_, Aug 01 2008

%t LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 0}, 100] (* _Vladimir Joseph Stephan Orlovsky_, Jul 01 2011 *)

%t CoefficientList[Series[((-1+x) x^2)/(-1+x+x^2+x^3+x^4),{x,0,50}],x] (* _Harvey P. Dale_, Oct 21 2011 *)

%o (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,1,1]^n)[1,3] \\ _Charles R Greathouse IV_, Apr 08 2016, simplified by _M. F. Hasler_, Apr 20 2018

%o (PARI) x='x+O('x^30); concat([0,0], Vec(((x-1)*x^2)/(x^4+x^3+x^2+x-1))) \\ _G. C. Greubel_, Jan 09 2018

%o (Magma) I:=[0,0,1,0]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // _G. C. Greubel_, Jan 09 2018

%Y Absolute values of first differences of standard tetranacci numbers A000078.

%Y Cf. A000288 (variant: starting with 1, 1, 1, 1).

%Y Cf. A000336 (variant: sum replaced by product).

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Jul 31 2000

%E Edited by _M. F. Hasler_, Apr 20 2018